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Université Aix–Marseille II & C.N.R.S.
Marseille, France

email: anna.montagnini@incm.cnrs-mrs.fr

Eric CASTET
I.N.C.M. (UMR 6193)

Université Aix–Marseille II & C.N.R.S.
Marseille, France

email: eric.castet@incm.cnrs-mrs.fr

ABSTRACT
We present an ideal observer analysis of single word read-
ing in normal readers and central scotoma patients. Using
this technique we are able to predict the spatio-temporal
pattern of saccades in terms of pixels. This enables us to
contrast theories that are impossible to compare using the
traditional letter-slot approaches to modelling reading.
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1 Introduction

From a low-level perspective, reading consists of a succes-
sion of fixations – each of which extracts information from
a text image – interleaved with saccadic movements. From
this perspective, a model of reading must provide an ac-
count of the spatio-temporal properties of these fixations,
and of how these relate to the physiological properties of
the eye. It is well-known that normally-sighted subjects
read words by placing the maximal acuity zone of the retina
(i.e., the fovea) on different locations of the words. How-
ever, patients with macular lesions in the center of the vi-
sual field (i.e., central scotomata), need to place the fovea
outside of the word and use the peripheral zone of the retina
(i.e., the parafovea) to be able to effectively extract infor-
mation about the word.

Current clinical data are not sufficient to identify
which are the oculomotor strategies that would optimize
the reading performance of central scotoma patients. Re-
sults on the ‘pseudo-fovea’ used by these patients – their
preferred retinal location (PRL) – are contradictory: On
the one hand, some studies suggest that there is no correla-
tion between reading performance and PRL ([1]). On the
other hand, some authors argue that such a correlation ex-
ists and that it is best to place the scotoma above the word
to be read (vertical strategy) rather than on the text line to
be read (lateral strategy; [2])

All currently implemented models of eye fixation be-
haviour during reading, rely on the assumption that fixa-
tions must always be centered on the actual line of text
to be read. This enables the computational simplification
that fixations can be described in terms of letter position
slots. Unfortunately however, this type of models are un-
suitable to investigate the optimality of the lateral and ver-
tical strategies described above, as it not even possible to
represent the latter in this way (i.e., fixations occur mostly
above or below that line of text). As a consequence, the
only existing computational model of reading with sco-
toma, Mr. Chips ([3, 4]), directly assumes that the lateral
strategy is optimal, but the fact remains that that was the
only strategy that the model was allowed to follow.

Our purpose in this study is to obtain a mathematical
description of the pattern of eye fixations that would be op-
timal in terms of information gain efficiency depending on
the properties of the retina. Our model therefore describes
predicted eye fixation behaviour at the level of individual
image pixels. This permits fixations to be centered either
on or outside the actual text area.

2 Model Description

Humans are very apt in choosing the optimal course of ac-
tions in terms of the benefit they expect to obtain from
them. Subjects performing tasks where an explicit gain
or penalty (in score points) is introduced, choose optimal
movement strategies with respect to their expected gain
([5]). Similarly, [6, 7] have shown that, in visual search
tasks, subjects also optimize their eye movement strategies
with respect to a gain function. In this case, the gain func-
tion was the relevant information that the subjects expected
to obtain by fixating on a particular point of an image, with
respect to the task and the constraints imposed by the acuity
of their visual fields.

Our approach to reading assumes that the optimal
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Figure 1. Schema of the model

reading strategy is the one that optimizes what we term
the Expected Information Gain (EIG) in each fixation. De-
pending on what is considered as information, the EIG can
be defined in slightly different ways. On the one hand,
we could consider a – suboptimal – model where the goal
is to identify the image pixel values, without taking into
consideration that the pixels must form letters and even-
tually words. On the other hand we could consider that
our task in reading is the identification of words from the
image, and thus introduce top-down information about the
words that the image should contain. Although the latter
word-based strategy would be the optimal one, some sup-
port can be found in the literature for suboptimal reading
strategies that do not consider lexical top-down informa-
tion ([8]). In order to consider these two possibilities, we
will use two modelling strategies: a suboptimal pixel-based
strategy lacking any top-down information, and an optimal
word-based strategy where top-down information strongly
constrains the possible images.

Figure 1 summarizes the three main steps in the model
we propose. After a fixation (initially in the center of the
display due to the fixation cross), the model updates its
probability distributions of pixel values (depending on the
degree of top-down information used in the model this can
either be done directly at the pixel level, or through a me-
diating lexical level). This is done by combining the retinal
acuity matrix centered on the fixated point, with the image
pixel values. This results in a noisy sample from the actual
image, with the level of noise depending on the visual acu-
ity at each particular pixel. This sample is combined with
the previous knowledge about the image obtained through
the previous fixations (initially the prior expectations). Fur-
ther detail on this initial stage can be found in Section 2.1.

In the second step, the EIG for each possible next fix-
ation is computed. For this purpose, the effect of a subse-
quent fixation in each possible point is evaluated. The pixel
probabilities are transformed into mutual informations (ei-
ther about pixel values or word identities). These mutual
information are combined (i.e. convoluted) with the retinal
acuity matrix to obtain an estimate of how much informa-
tion would be obtained by fixating each point of the image.
See Section 2.2 for more details on this step.

Finally, in the last step, the EIG distribution obtained
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Figure 2. Pixel-based prior probabilities

in the previous step is normalized into a probability density
function. This implements the assumption that the proba-
bility of fixating a point is directly proportional to the EIG
from fixating that point. The next fixation is then sampled
from this probability distribution (one could also choose
the maximum of this distribution, but this would result in a
deterministic strategy, that does not correspond well to hu-
man behavior). Section 2.3 provides more details on this.
These three steps are iterated until a predefined level of cer-
tainty (θ) about the value of the pixels (or the identity of the
word) is reached.

2.1 Updating the Probability Distributions

Before each fixation, the model has a prior expectation on
the possible color values (black or white) of the pixels in
the screen. This prior expectation corresponds to the infor-
mation we have obtained by the previous fixations, or just
to the overall prior of the model, if there have not been any
fixations (i.e., we are at the beginning of the process). We
will refer to this pixel-based prior after the k-th fixation as
P (k). This expectation is a matrix whose elements are the
the probabilities that each pixel takes the value of 1. The
prior P (0) represents the probability of a pixel being ac-
tive before obtaining any information through fixations. As
for the moment we will only consider the situation where
words are presented in a constant font at the middle of the
screen, this prior will be the frequency-weighted sum of the
images corresponding to the 30,000 most frequent French
words. Figure 2 illustrates how this prior looks like in our
experiments (red indicates higher probability of an active
pixel).

In order to update this matrix using the visual infor-
mation, we resort to Bayes’ theorem. The probability that
point pj is active after fixating on point i is estimated as:

P
(k+1)
j = P (pj |di,j) = P

(k)
j

P (di,j |pj = 1)
P (di,j |pj = 0) + P (di,j |pj = 1)

,

where di,j is the value of point j that results from center-
ing the acuity matrix at point i of the image, and adding
noise in each point in inverse proportion to the level of
acuity at that point (see Figure 3 for the acuity matrices
that we used). The likelihood in this equation is calculated
as a coming from a Bernoulli trial with the corresponding
amount of noise.
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Figure 3. Retinal acuity matrices for normal and simulated
central scotoma. The difference in colors is due to different
scales.

2.2 Computation of the EIG

As mentioned above, we define the EIG as the mutual in-
formation between the probability distribution of pixel val-
ues (using the current estimate at each point), and the word
identity. More precisely, we will consider the summed mu-
tual informations that would be obtained in each possible
fixation (for all points), weighted by the acuity matrix. This
is easily calculated as the convolution between the matrix
of mutual informations (for each pixel), and the retinal acu-
ity matrix. Note that in a word-based strategy this will
result in an overestimation of the mutual information, as
much of the information provided by one pixel is redundant
with the others. A direct estimation of the amount of redun-
dancy in each pixel is difficult to obtain. However, the mu-
tual information between pixels in natural images decreases
as a power-law of their distance ([9]), and this applies also
to sequences of letters in running text ([10]). Therefore,
we can correct our estimation by de-convoluting the result-
ing information matrix with a power-law filter with wider
horizontal than vertical covariance (this is to account for
the mutual information between pixels being larger within
the same line of text). The application of this filter results
in a high-passed version of the information matrix (with a
stronger horizontal component).

As pixel values univocally determine word identies
(we use constant fonts, sizes, and word locations) the mu-
tual information between words and pixel values reduces to
the plain entropy of each pixel. Thus it is easy to convert
the probability matrix P (k) into the corresponding infor-
mation matrix I(k):

I(k) = −P (k) log2 P
(k) − (1− P (k)) log2(1− P (k))

In order to compute the EIG, in the pixel-based ap-
proach we only need to convolute the mutual information
matrix (I(k)) with the corresponding acuity matrix (A). In
the word-based approach an additional correction for re-
dundancy is obtained by de-convoluting the result with the
filter described above:

EIG(k+1) = I(k+1) ⊗A[�R],

where the last optional step represents the de-convolution
with the redundancy filter (R).

2.3 Selection of the next fixation

The expected information gain matrix (EIG(k+1)) repre-
sents our estimation of the gain in information that will
be obtained by fixating in each point of the screen. Max-
imizing this gain can be done in two ways. An option
could be picking directly the maximum of EIG(k+1) as
the next point to fixate, leading to a deterministic (max-
imum posterior) strategy. Alternatively one can sample
from EIG(k+1) as if it were a probability distribution (af-
ter a normalization by its sum). This presents a non-
deterministic strategy, which is more suitable to model non-
deterministic human data, and still converges to an optimal
strategy. Note that this non-deterministic strategy is equiv-
alent to saying that the probability of fixating a particular
point is directly proportional to the information we expect
to obtain from it, thus more informative points will be sam-
pled more often.

Repeated sampling from a probability distribution
presents the disadvantage of a great unstability. A different
point will be selected in each cycle of the algorithm (the
probability of changing location asymptotes to one with
growing image resolution). Ideally, we would want some
points to remain fixated longer than others, as is the case
in humans. This can be accounted for by introducing an
additional cost for movement. During time when the eye
is being moved, no information is acquired by the system.
Therefore in an optimal strategy the system would take this
into account, by evaluating at each point whether it is likely
to obtain more information by moving than by just remain-
ing on the same location. Formally, if at time k we are
fixating at point i, the condition that must be satisfied in
order to move is:

αEIG
(k+1)
i < E(EIG(k+1)) =

∑
j(EIG

(k+1)
j )2∑

j EIG
(k+1)
j

,

where α ≥ 1 represents a ‘conservativeness’ bias, reflect-
ing the time that is spent moving (which would be spent
obtaining information if we did not move), and the opera-
tor E(x) refers to the expectation of x.

3 Results and Discussion

Figure 4 illustrates the distributions of predicted fixations
that one obtains using the method described above (in a
pixel-based strategy). The most apparent difference be-
tween the normal retina and the central scotoma case is that,
while in the normal case fixations would mostly happen di-
rectly on the word, most fixations in the scotoma condition
would fall either above or below the actual word, with only
a few of them falling on the sides. Thus, according to our
analysis, the optimal reading strategy in scotoma would be
the “vertical” one mentioned in the introduction, which is
strongly preferred over the “lateral” strategy (which is also
present but in a lesser degree). This strategy is preferred
across all stages of the recognition process, from the very
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Figure 4. Predicted fixation distributions in the “normal”
(upper panels) and “scotoma” (lower panels) for the word
“responsable”. The leftmost column plots the distribution
of predicted first fixations. The mid column plots the distri-
bution of fixation midway through the recognition process
(5 fixations for normal and 21 for scotoma). The rightmost
panels plot distribution of predicted fixations after the last
one. The overall level of red intensity in each graph plots
the information remaining to be acquired.

early ones to the last ones. Thus, an ideal observer analysis
of (single word) reading, provides support for the “vertical”
strategy, consistent with the experimental results of [2].

The graph in Figure 5 shows the predicted reading
latencies (measured in fixation cycles, which may or may
not correspond to actual different fixations, depending on
the condition) for the normal and scotoma cases as a func-
tion of word length. Two issues are noteworthy. First, the
scotoma case is predicted to be overall much slower than
than the normal retina case. Second, although both cases
are strongly affected by word length, with longer words
being slower to be recognized, this effect is much more
pronounced in the scotoma case. Both of these predictions
are consistent with experimental results.

We have presented a simple ‘ideal-observer’ analysis
of single word reading that is able to model fixation lo-
cations and recognition latencies for both normal readers
and central scotoma patients. Our analysis supports that, in
the single word case, a vertical reading strategy is prefer-
able for central scotoma patients, consistent with the results
presented in [2]. Despite being overall succesfull, our anal-
ysis also fails to account for some additional facts reported
in the literature. Of particular interest is that, while in our
analyses it appears that both the lateral and vertical strate-
gies should be symmetrical (equal preferences for above or
below and right or left of the word), scotoma patients seem
to show a slight preference for PRLs respectively to the left
and below the scotoma (in the visual field). This may sug-
gest additional mechanisms in the system or, alternatively,

Figure 5. Comparison of recognition times (number of cy-
cles in the system) as a function of word length for the sco-
toma case (red line) and normal case (blue line).

a modification of the priors (for instance to account for the
fact that reading in French mostly involves following the
text left-to-right, top-down in a page).
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