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Effects of frequency, predictability, and position of words on event-related potentials were
assessed during word-by-word sentence reading in 48 subjects in an early and in a late time
window corresponding to P200 and N400. Repeated measures multiple regression analyses
revealed a P200 effect in the high-frequency range; also the P200 was larger on words at the
beginning and end of sentences than on words in the middle of sentences (i.e., a quadratic
effect of word position). Predictability strongly affected the N400 component; the effect was
stronger for low than for high-frequency words. The P200 frequency effect indicates that
high-frequency words are lexically accessed very fast, independent of context information.
Effects on the N400 suggest that predictability strongly moderates the late access especially
of low-frequency words. Thus, contextual facilitation on the N400 appears to reflect both
lexical and post-lexical stages of word recognition, questioning a strict classification into
lexical and post-lexical processes.
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1. Introduction

The frequency of words and their predictability in the context
of a given sentence are two of the strongest determinants
influencing reading. Despite much research, the role of word
frequency as an indicator of ease of lexical access and of word
predictability as an indicator of ease of semantic processing or
of post-lexical integration, as well as the interaction of these
two variables, are not yet well understood. Here, we report
timelines of these effects as revealed in early (P200) and late
3.
e (M. Dambacher).
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(N400) event-related potentials (ERPs) which were measured
on open-class words in a sentence-reading experiment.

Word frequency (i.e., the printed frequency of a word in a
text corpus) is well known to affect the speed of word iden-
tification. Readers take longer to recognize low than high-
frequencywords (e.g., Forster and Chambers, 1973; Rubenstein
et al., 1970). Eyemovement research corroborated this finding,
revealing longer fixations on low than on high-frequency
words (e.g., Inhoff and Rayner, 1986; Kliegl et al., 2004, 2006;
Rayner and Duffy, 1986; Schilling et al., 1998).
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Also, word predictability or cloze probability (i.e., the pro-
portion of subjects that fill in a particular word as the most
probablenextword in a sentence) influencesword recognition.
Reaction times (e.g., Fischler and Bloom, 1979; Kleiman, 1980)
as well as fixation or gaze durations during natural reading
(e.g., Kliegl et al., 2004, 2006; Rayner and Well, 1996; Rayner et
al., 2001) are shorter for high than for low predictable words.

Despite an agreement on independent contributions of
frequency and predictability to word recognition, there are
conflicting theoretical perspectives on the exact time course
and interaction of the two variables. In general, lexical access
(i.e., the moment, when an orthographic word form uniquely
activates the corresponding representation in the mental
lexicon and therefore is identified) is assumed to be fast and
automatic, whereas post-lexical integration is presumably a
much slower process.Word frequency has served as one of the
prime indicators of difficulty in lexical access (e.g., Hudson
and Bergman, 1985; Monsell et al., 1989) and is one of the key
factors constrainingmodels of word recognition (Grainger and
Jacobs, 1996; Jacobs and Grainger, 1994). In contrast, there is
some controversy about whether predictability affects word
recognition at an early stage, at the moment of lexical access,
or whether it only influences post-lexical levels, like semantic
integration. These perspectives are reflected in different
implementations of lexical and contextual information in
models of language comprehension:

In modular approaches (e.g., Fodor, 1983; Forster, 1979),
functionally independent lexical subsystems are assumed to
activate word representations by bottom-up processing,
whereas context merely affects post-lexical integration pro-
cesses. Consequently, these approaches do not predict inter-
actionsbetween frequencyandcontext. In contrast, interactive
activation models (e.g., McClelland, 1987; Morton, 1969) allow
interactions between these two variables: both frequency and
context may affect early stages in word recognition.

Experimental evidence relating to this theoretical distinc-
tion has not been consistent. Context was shown to facilitate
recognition of low-frequency words stronger than recognition
of high-frequency words (e.g., Becker, 1979), but purely
additive effects have been reported as well (e.g., Schuberth et
al., 1981). In eye movement measures, frequency and predict-
ability generally did not interact reliably although there were
some deviations from additivity (for review, see Rayner et al.,
2004). In summary, while there is strong evidence for the
relevance of frequency and predictability on language com-
prehension, it has not been resolved whether they link spe-
cifically to temporally distinct processes of lexical access and
post-lexical integration.

1.1. Frequency and predictability in ERPs

ERPs can be used to delineate the time course of word
recognition because they provide an online measure of neural
activity with a high temporal resolution (Kutas and Van
Petten, 1994). The first occurrence of a frequency effect in
ERPs serves as an upper time limit for lexical access (Hauk and
Pulvermüller, 2004). ERP differences after this point are often
interpreted as post-lexical. Several researchers reported
frequency effects in the time range of approximately 400 ms
after stimulus onset (N400, see below; e.g., Rugg, 1990; Van
Petten and Kutas, 1990). However, the eyes of a skilled reader
usually rest for less than 250mson aword before theymove on
to the next word; therefore, some part of lexical access is likely
to occur during this typical fixation duration (Sereno et al.,
1998). Indeed, Sereno et al. obtained aword frequency effect as
early as 132 ms post-stimulus in an ERP study. Similarly,
results of a single-case MEG study revealed a frequency effect
for shortwords in awindow from120 to 160msand for allword
lengths between 240 and 290 ms (Assadollahi and Pulvermül-
ler, 2001). Hauk and Pulvermüller (2004) reported smaller
amplitudes for high-frequency than for low-frequency words
in an epoch from 150 to 190 ms. In summary, lexical access as
indicated by word frequency effects appears to occur within
the first 200 ms after stimulus presentation, but there is also
evidence for temporally later influence of word frequency.

Context effects in ERPs were predominantly found on the
N400 component, a negative deflection occurring in a time
range between 200 and 500msafter stimulus presentation. It is
largest over centro-parietal sites, although it can be observed
across the whole scalp (Coulson and Federmeier, in press; for
review, see Kutas and Federmeier, 2000; Kutas and Van Petten,
1994). The N400 was described first by Kutas and Hillyard
(1980). They presented sentences with final words that were
semantically congruent or incongruent with the preceding
context. Semantically incongruent words elicited a large N400.
The sensitivity of the N400, however, is not constrained to
anomalous words within a context; its amplitude correlates
negatively with predictability (Kutas and Hillyard, 1984; Kutas
and Van Petten, 1994). Moreover, Kutas and Hillyard (1983)
reported N400s for positions other than final ones with larger
amplitudes for earlier than later word positions.

Sereno et al. (2003) investigated effects of word frequency
and context effects on an early ERP component. Ambiguous
wordswith a low- and a high-frequencymeaningwere used as
final words in sentences. The context of the preceding sen-
tence fragmentwas either neutral or biased the low-frequency
meaning. The neutral context should activate the dominant
high-frequency meaning of the final word. In contrast, the
subordinate low-frequencymeaning should only play a role in
the biasing context. In a timewindow from 132 to 192ms post-
stimulus, ambiguous words in a biasing context elicited
amplitudes similar to those of low-frequency words, whereas
in a neutral context, amplitudes resembled those of high-
frequency words. Thus, a biasing context selectively activated
the subordinate meaning of an ambiguous word and margin-
ally facilitated low-frequency but not high-frequency words.
The authors concluded that this pattern of results provides
evidence for an early influence of context on lexical stages in
word recognition.

The relation betweenword frequency and context was also
addressed by Van Petten and Kutas (1990; see also Van Petten
and Kutas, 1991; Van Petten, 1993). They categorized open-
class words (nouns, verbs, adjectives, and “ly” adverbs)
according to their frequency. Cloze-probability values were
available for the terminal words in each sentence. For the
remaining words, the position in a sentence was taken as a
proxy of contextual support. The authors reported three main
results on the N400. First, amplitudes were larger for low-
frequency than for high-frequency words. Second, N400
amplitudes decreased with increasing position, presumably
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reflecting the build-up of context “online”. Third, low-frequen-
cywords elicited a largerN400 thanhigh-frequencywords only
if they occurred early in the sentence, not at later positions.
The authors considered this finding as “evidence that frequen-
cy does not play a mandatory role in word recognition but can
be superseded by the contextual constraint provided by a
sentence” (Van Petten and Kutas, 1990, p. 380). Premise for this
argument is that the N400 reflects lexical processes. However,
there is disagreement concerning the temporal nature of N400
effects: some experimental results indicated that the ampli-
tude ismodulated by lexical processes (e.g., Besson et al., 1992;
Deacon et al., 2000); other studies argued that the N400 is
sensitive to post-lexical integration (e.g., Brown and Hagoort,
1993; Holcomb, 1993).

In summary, the question of timelines associated with
lexical access and post-lexical integration during reading still
requires further investigation. Frequency plays an important
role in lexical access but apparently also modulates tempo-
rally later ERP components like the N400. Predictability (or,
alternatively, position of word in sentence) correlates with the
N400 amplitude but also with word recognition processes on
early components. Interactions of these variables have also
been described early and late in the ERP time course. However,
these effects have been assembled across several experi-
ments. To our knowledge, there is no study yet which exam-
ined lexical access and post-lexical integration during reading
with independent measures of frequency, predictability, and
word position in early and late ERP components.

1.2. Present study

In the present study, a corpus of 144 sentences (1138 words)
was used as stimulus set. Values for frequency and predict-
ability were available for all corpus words, along with other
independent variables such as word length and ordinal posi-
tion of the word in the sentence. To our knowledge, there exist
only two sets of sentences with predictability norms for all
words (i.e., Kliegl et al., 2004; Schilling et al., 1998, augmented
by Reichle et al., 1998).

We tested effects of word frequency, predictability, and
position in sentence, as well as the interactions between these
variables, in early and late stages of word recognition using
single-trial EEG amplitudes as dependent variables. This de-
sign allows us to go beyond previous research in at least two
respects. First, we assume that predictability is a more direct
measure of the contribution of sentence context than word
position. Therefore, we hypothesized that, irrespective of the
position of the word in the sentence, frequency, and predict-
ability would interact on the N400 as previously was shown for
frequency and position. Second,we expected that the decrease
of N400 amplitudes acrossword positionwould be attributable
to the build-up of contextual information as proposed by Van
Petten and Kutas (1990, 1991). If predictability completely
accounts for context-related variance in ERPs, there should be
no unique variance associated with word position after
statistical control for the effects of predictability. In other
words, predictability should absorb all N400 effects associated
with word position but not vice versa.

We examined the data using repeated measures multiple
regression analyses (rmMRAs; Lorch and Myers, 1990, method
3; see Kliegl et al., 2006, for a recent application to the analyses
of eye movements in reading) in an early (P200) and a late
(N400) time window. Mean EEG amplitudes were computed
within these time windows (collapsed across sampling points
and selected electrodes for the components) for each word
within each subject. These single-trial EEG amplitudes served
as criterion in the rmMRAs. An advantage of this procedure is
that rmMRAs statistically control for differences between par-
ticipants. Then, after between-subject variance has been re-
moved, effects of variables such as frequency, predictability,
and word position as well as their interactions can be esti-
mated within one single model statistically controlling for
correlations between the predictors. Since predictors need not
be divided into discrete categories but can be submitted to the
models as continuous values, the whole variability of word
properties mapping on the dependent variable is used. Using
EEG amplitudes on a single-trial level instead of values col-
lapsed across many items provides information of electro-
physiological correlates as a function of different properties of
single words. Furthermore, the large amount of data points
yields high statistical power. However, waiving data averaging
results in a loss of noise reduction. Thus, necessarily the
variance accounted for by rmMRA models on single-trial EEG
amplitudes is very small.

We limited our analyses to open-class words, i.e., nouns,
verbs, adjectives, andmost of the adverbs. Closed-class words,
like auxiliary verbs, pronouns, conjunctions, and determiners,
were excluded. This restriction was motivated by findings
suggesting that words of different classes are processed by
distinct neural systems, because open-class and closed-class
words evoke different ERP components. For instance, an N280
component was elicited only by closed-class words, whereas
open-class words evoked an N400 (Neville et al., 1992). How-
ever, this issue is discussed controversially. Results of other
studies revealed that differences between word classes do not
reflect qualitatively separate processing mechanisms but
rather are a function of word frequency or of frequency and
length (e.g., King and Kutas, 1998; Münte et al., 2001; Osterhout
et al., 1997).

Another restriction was the exclusion of sentence-final
words. Previous studies revealed that ERPs for sentence-final
words differ from those of words occurring earlier in a sen-
tence. They often appear to evoke more positive-going ERPs
than sentence-intermediate words (e.g., Friedman et al., 1975;
Osterhout and Holcomb, 1995; Osterhout, 1997; see also Kutas
et al., 1988; Van Petten, 1993). This effect canmost probably be
attributed to sentencewrap-up, decision, and/or response and
reduces the comparability of ERPs of sentence-intermediate
and sentence-final words (Hagoort, 2003; Osterhout and Nicol,
1999).
2. Results

Grand-average plots for open-class words are presented in
Figs. 1 and 2 illustrating the effects for three frequency classes
and three predictability classes, respectively. A small negativ-
ity, peaking at 100 ms, was followed by a large positive
deflection reaching its maximum amplitude 170 ms after
stimulus onset (P200). At this latency, differences in ERPs for



Fig. 1 – Frequency grand averages. Grand average plots of effects of three frequency classes for open-class words in sentences
comprising seven to nine words; sentence-final words are excluded. The three classes are based on categories of Table 3.
Amplitude differences are visible on the P200 predominantly over fronto-central electrodes on the left hemisphere.
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word frequency are visible on fronto-central electrodes
predominantly on the left hemisphere. After about 260 ms, a
negative deflection occurred mainly over centro-occipital
electrode sites peaking at a latency of approximately 400 ms
(N400). During this epoch, grand average curves of predict-
ability classes are gradually arranged with larger amplitudes
for words of low than of high predictability classes.

2.1. P200

Effects of frequency, predictability, and position on P200 ampli-
tudes were examined in two separate 3 × 3 repeated measures
analyses of variance (rmANOVAs). The first rmANOVA with
frequency and predictability as within-subject factors revealed
significant results for frequency [F(2,94) = 6.52, P < 0.01, partial
η2=0.12] andpredictability [F(1,92) =4.33,P=0.02, partialη2=0.08].
The interaction between predictability and frequency was not
reliable [F(3,177) = 0.63, P = 0.63, partial η2 = 0.01].
The second rmANOVA comprised frequency and position
as factors. Again, themain effects were significant [Frequency:
F(1,79) = 11.79, P < 0.01, partial η2 = 0.20; Position F(1,75) = 13.03,
P < 0.01, partial η2 = 0.22], whereas the interaction was not
[Frequency × Position: F(3,166) = 0.94, P = 0.43, partial η2 = 0.02].

The effects of frequency, predictability, and position were
scrutinized within a single rmMRA model. The regression
coefficients of the rmMRA for open-classwords on the P200 are
listed in Table 1. They are the mean of the unstandardized
regression coefficients calculated separately for each subject
(Lorch and Myers, 1990, method 3, individual regression
equations). Moreover, Table 1 lists standard errors of regres-
sion coefficients, the drop of R2 for removing thepredictor from
the complete model, as well as probabilities of significance
tests for the regression coefficients and the R2 decrement.

The effects of predictors are visualized in Fig. 3. Open
symbols reflect the mean of empirical ERP amplitudes in the
time range from 140 to 200 ms post-stimulus. Bins in the plots



Fig. 2 – Predictability grand averages. Grand average plots of effects of three predictability classes for open-class words in
sentences comprising seven to nine words; sentence final words are excluded. The three classes are based on categories of
Table 3. Amplitudes are graded on the N400 over centro-occipital electrodes.
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for frequency and predictability (panels 1 and 2) were com-
puted on the basis of predictor quantiles ensuring a similar
number of data points for each category. Categories for fre-
quency and predictability in the interaction plots (panels 4 and
5) correspond to classes in Table 3. Error bars reflect 99%
within-subject confidence intervals (Loftus andMasson, 1994).
Raw correlations between predictor and the criterion are given
in parentheses as supplementary information along with the
description of the results.

P200 amplitudes were smaller for high than for low-fre-
quency words (panel 1). The quadratic frequency term
(r = −0.045) was significant, whereas the linear (r = −0.040)
was not. Amplitude differences were larger among three high-
frequency bins than among those of low-frequency words.
That means the size of the frequency effect increased with
augmenting frequency. Consequently, the quadratic trend
accounted for a larger amount of unique variance than the
linear trend.
The predictors accounting for most of the unique variance
in P200 amplitudes were linear and quadratic terms of word
position (r = −0.044 and r = −0.034, respectively). Amplitudes
decreased during early positions in a sentence, reached a
minimum around the middle position (5th word), and started
to increase again towards the end of the sentence (panel 3).
This is an unexpected and, as far as we know, novel result.

Neither predictability (panel 2; r = −0.029) nor the interac-
tion of predictability and frequency (panel 4; r = 0.007), nor the
interaction of position and frequency (panel 5; r = −0.053) were
significant in the rmMRA model for the P200.

2.2. N400

Like on the P200, two rmANOVAs were carried out to examine
effects on N400 amplitudes. In the first rmANOVA with fre-
quency and predictability as within-subject factors, predict-
ability [F(1,89) = 24.21, P < 0.01, partial η2 = 0.34] and the



Table 1 – Mean and standard errors (SE) of regression coefficients of the rmMRA for ERP amplitudes of open-class words in
the time window 140–200 ms at fronto-central electrode sites

P200 (7 predictors) Mean SE t pt −ΔR2 p-ΔR2

Constant 1.134 0.128 8.83 <0.01
Frequency 0.074 0.090 0.82 0.21 <0.0001 0.46
Frequency2 −0.030 0.015 −1.96 0.03 0.0002 0.05
Predictability 0.004 0.051 0.09 0.47 <0.0001 0.92
Position −0.293 0.058 −5.08 <0.01 0.0018 <0.01
Position2 0.029 0.006 4.74 <0.01 0.0014 <0.01
Predictability × Frequency 0.003 0.021 0.16 0.44 <0.0001 0.84
Position × Frequency −0.007 0.009 −0.84 0.20 <0.0001 0.47
[R2Predictors = 0.005; R2Subjects = 0.110; R2Model = 0.115]

Note. Means, SE, t values, and associated P values for predictors. −ΔR2 is the drop of variance of the full model due to removal of the predictor;
p-ΔR2 gives P values for the significance of the variance decrement. R2Predictors, R2Subjects, and R2Model show variance accounted for by predictors
alone, by subjects alone, and by the full model, respectively. Statistics are based on 48 subjects, i.e., 47 degrees of freedom for t statistics.
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interaction between predictability and frequency [F(2,125) =
2.94, P = 0.04, partial η2 = 0.06] were reliable. Frequency was
marginally significant [F(1,71) = 3.39, P = 0.05, partial η2 = 0.07].

The second rmANOVA with the factors frequency and
position revealed significant effects for frequency [F(1,68) =
24.86, P < 0.01, partial η2 = 0.35] and the interaction between
position and frequency [F(3,168) = 2.60, P = 0.04, partial η2 =
0.05]. Word position yielded a trend [F(1,78) = 2.89, P = 0.07,
partial η2 = 0.06].

The effects in the rmANOVAs on the N400 were scrutinized
in rmMRAs. The results are listed in Table 2 showing un-
standardized regression coefficients, along with associated
standard errors, the drop of R2 for removing the predictor from
the model, and probabilities of significance tests for the reg-
ression coefficients and the R2 decrement. Fig. 4 presents a
visualization of the effects; error bars reflect 99% within-
subject confidence intervals (Loftus and Masson, 1994).

In the first rmMRA [Table 2; 1: N400 (6 predictors)], the
strongest predictor for the N400 was predictability (r = 0.077).
Panel 2 shows that amplitudes decreased substantially with
increasing predictability.

The interaction of predictability and frequency (r = −0.006)
was also reliable. Panel 4 reveals a larger predictability effect
for words of low than of high frequency.

The interaction of position and frequency (panel 5; r = 0.057)
was not significant in the rmMRA. However, the pattern of
means corresponded to previous reports: The frequency effect
was strong at early positions and became weaker across the
sentence.

Neither the linear (r = 0.066) nor the quadratic terms
(r = 0.056) of frequency (panel 1), nor word position (r = 0.027,
panel 3) reached significance.

To test whether the interaction of predictability and fre-
quency absorbed variance of other predictors, we carried out a
second rmMRA without this interaction term. The results of
this five-predictor model are listed in Table 2 [2: N400 (5
predictors)]. In thismodel, predictability still accounted for the
largest amount of variance and was highly reliable.

Different from the first rmMRA, linear and the quadratic
frequency terms, as well as the interaction of position and
frequency, were significant. This indicates that variance
related to frequency and word position was absorbed by the
interaction of predictability and frequency in the rmMRAwith
six predictors. The visualization of the frequency effect on the
N400 (Fig. 4, panel 1) reveals a striking contrast to the one on
the P200 (Fig. 3, panel 1): Amplitude differences are now lar-
gest between the three low-frequency bins. Modulations
among the bins of high-frequency words are much smaller.
Word position was not significant in the second model.

Finally, in order to examine whether the effect of position
was superseded by predictability, the latter was also excluded.
We carried out an rmMRA on the four remaining predictors of
linear frequency, quadratic frequency, position, and the
interaction of position and frequency. In this model, the
coefficient for position was significant (t = 2.99, P < 0.01),
indicating that N400 amplitudes decreased with increasing
word position (panel 3). The result provides evidence that
predictability had absorbed variance of word position.
Concerning significance, the other predictors did not change
when compared to the rmMRA on five predictors. All coeffi-
cients revealed significant results (Frequency: t = 5.26, P < 0.01;
Frequency2: t = −3.35, P < 0.01; Position × Frequency: t = −2.07,
P = 0.02).

2.3. Supplementary analyses

For a further validation of the above results, we carried out
additional analyses. First, the predictor of word length was
added to the rmMRA models. In previous studies, length was
found to affect ERP amplitudes particularly around the P200
time window (e.g., Hauk and Pulvermüller, 2004; Van Petten
and Kutas, 1990). Furthermore, frequency and length are not
independent of each other but are negatively correlated
(r = −0.56). Thus, we tested whether the pattern of results
would change by including both predictors at the same time.
When added to the primary rmMRA models, word length was
neither reliable on the P200 (t = −0.46, P = 0.32) nor on the N400
(t = −0.29, P = 0.39). The basic patterns of significance
concerning the other predictors did not change. Additionally,
we included the interaction between word length and fre-
quency. This predictor also failed to reach significance for P200
(t = 1.13, P = 0.13) and N400 (t = 0.28, P = 0.39) amplitudes.
However, on the P200, it absorbed variance accounted for by
the quadratic term of frequency, which was no longer sig-
nificant (t=−0.63, P= 0.26). Theother predictors on theN400did
not change with respect to significance.



Fig. 3 – rmMRA on P200 Amplitudes. Illustrations of the predictor effects of the rmMRA in the interval from 140 to 200 ms over
fronto-central electrodes. Bins of frequency and predictability in panels 1 and 2 are based on quantiles of the predictors.
Categories of frequency and predictability in panels 4 and 5 reflect predictor classes of Table 3. Open symbols show empirical
mean amplitude values. Error bars represent 99% within-subject confidence intervals.
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2.4. Goodness of fit

The total variance accounted for by each of the rmMRAmodels
described above was small. For example, from the 11.5% in the
model for the P200, 11.0% can be attributed to between-
subjects variance, whereas the predictors explained 0.5%. The
model for the N400 accounted for a total of 7.3% of variance;
6.5% were due to differences between subjects and 0.9% could
be traced to the influence of the predictors. At first glance, this
seems to be a very poor fit in all cases. Remember, however,
that we predicted single-trial EEG amplitudes. As mentioned
earlier, this results in substantial loss of noise reduction in the
data. The power of variance reduction due to data aggregation
can be seen in the values of partial η2 in the rmANOVAs. This
measure of effect-size has roughly the same dimension as in
analyses on averaged data from studies using experimental
designs. In contrast to that, a small R2 in analyses on un-
averaged data is the rule rather than the exception. Conse-
quently, the amount of variance accounted for should not be
unconditionally considered as an adequate measure for the
evaluation of model fit, at least not for analyses on unaggre-
gated data.
3. Discussion

The present ERP study addressed four issues. The first issue
related to the timeline of word recognition during reading. The
first appearance of a word frequency effect was considered as
an upper limit for lexical access. The second issue addressed



Table 2 – Mean and standard errors (SE) of regression coefficients of the rmMRA for ERP amplitudes of open-class words in
the time window 300–500 ms at centro-occipital electrode sites

Mean SE t pt −ΔR2 p-ΔR2

1: N400 (6 predictors)
Constant −0.283 0.122 −2.31 0.01
Frequency 0.093 0.131 0.70 0.24 <0.0001 0.39
Frequency2 −0.022 0.018 −1.26 0.10 0.0001 0.20
Predictability 0.396 0.068 5.84 <0.01 0.0019 <0.01
Position 0.011 0.027 0.40 0.34 <0.0001 0.76
Predictability × Frequency −0.090 0.028 −3.22 <0.01 0.0005 <0.01
Position × Frequency −0.010 0.012 −0.77 0.22 <0.0001 0.37
[R2Predictors = 0.009; R2Subjects = 0.065; R2Model = 0.073]

2: N400 (5 predictors)
Constant −0.283 0.122 −2.31 0.01
Frequency 0.439 0.097 4.54 <0.01 0.0015 <0.01
Frequency2 −0.057 0.017 −3.44 <0.01 0.0006 <0.01
Predictability 0.203 0.036 5.56 <0.01 0.0026 <0.01
Position 0.042 0.028 1.47 0.07 0.0001 0.10
Position × Frequency −0.022 0.012 −1.84 0.03 0.0002 0.03
[R2Predictors = 0.008; R2Subjects = 0.065; R2Model = 0.073]

Note. Means, SE, t values, and associated P values for predictors. −ΔR2 is the drop of variance of the fullmodel due to removal of the predictor; p-ΔR2
gives P values for the significance of the variance decrement. R2Predictors, R2Subjects, and R2Model show variance accounted for by predictors alone, by
subjects alone, and by the full model, respectively. Statistics are based on 48 subjects, i.e., 47 degrees of freedom for t statistics.
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the role of context in word recognition. Unlike any previous
study, we used predictability norms for each word in the
sentences as an independent measure of prior sentence
context. Third, with this information, we could also test the
interaction of predictability and frequency and study the
question of whether they map onto temporally distinct stages
of word recognition. Finally, we could assess the contribution
of word position, independent of context effects reflected in
predictability. In the following two sections, we discuss results
on the P200 and on the N400. Thereafter, we attempt to
present an integrative account of our results.

3.1. P200

In both rmANOVAs in the latency range from 140 to 200 ms
post-stimulus, we found a strong frequency effect over fronto-
central electrodes. Amplitudes were smaller for high-frequen-
cy than for low-frequency words.With respect to frequency as
an index for lexical access, this provides evidence that words
Table 3 – Number of words, mean values, and standard
deviations (SD) in three categories of logarithmic
frequency and logit-transformed predictability for
open-class words in sentences containing seven to nine
words in the Potsdam Sentence Corpus

Class Frequency Predictability

Number of
words

Mean SD Number of
words

Mean SD

1 153 0.47 0.29 278 −2.49 0.13
2 218 1.82 0.42 108 −1.50 0.27
3 126 3.36 0.48 111 −0.24 0.58

Sentence-final words are excluded.
are identified within the first 200 ms after stimulus presen-
tation during sentence reading. This result is in line with
previous studies. Early frequency effects were reported by
Sereno et al. (1998) at 132 ms, by Sereno et al. (2003) between
132 and 192 ms, by Assadollahi and Pulvermüller (2001)
between 120 and 170 ms, and by Hauk and Pulvermüller
(2004) between 150 and 190ms. The rmMRA on single-trial EEG
amplitudes confirmed this finding. The quadratic trend of
frequency illustrated in Fig. 3 (panel 1) revealed larger
amplitude differences among high-frequency than among
low-frequency words. Thus, lexical access was presumably
completed for high-frequency words while low-frequency
words were still being processed. Results from behavioral
and eye movement studies corroborate this hypothesis
revealing longer reaction times (e.g., Forster and Chambers,
1973; Rubenstein et al., 1970) and fixation durations on low-
frequency words (e.g., Inhoff and Rayner, 1986; Kliegl et al.,
2004, 2006; Rayner and Duffy, 1986; Schilling et al., 1998). In
supplementary analyses, we tested whether the result was
caused by words of different lengths rather than by frequency.
This was necessary because frequency and length are nega-
tively correlated, i.e., on average, high-frequency words are
shorter than low-frequency words. Previous studies also
revealed effects of word length on ERP amplitudes in early
time windows (e.g., Hauk and Pulvermüller, 2004; Van Petten
and Kutas, 1990). However, word length did not affect P200
amplitudes. Also the interaction between length and frequen-
cy was not reliable, but it should be noted that, as a conse-
quence of the additional predictor, word frequency lost
significance in the P200 time window. This can be attributed
to the fact that both variables account for variance of the very
same effect: The interaction plot of length and frequency (not
illustrated in this paper) revealed that especially short words
(i.e., high-frequencywords) showa frequency effect in the P200
time window. The quadratic frequency effect demonstrated



Fig. 4 – rmMRA on N400 Amplitudes. Illustrations of the predictor effects of the rmMRA in the interval from 300 to 500 ms
over centro-occipital electrodes. Bins of frequency and predictability in panels 1 and 2 are based on quantiles of the predictors.
Categories of frequency and predictability in panels 4 and 5 reflect predictor classes of Table 3. Open symbols show
empirical mean amplitude values. Error bars represent 99% within-subject confidence intervals.
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that predominantly high-frequency words (i.e., short words)
are lexically accessed. Although the correlation between
the variables complicates an ascription of the amplitude
modulations to either length or frequency, we attribute the
effect on the P200 primarily to the contribution of frequency
rather than of length, because the latter predictor did not
significantly account for unique variance in the rmMRAs.

Word predictability revealed a significant effect in the
rmANOVA on P200 amplitudes, suggesting an early influence
of context information on word recognition. However, it is
important to note that word position strongly modulating the
P200 was not included as factor in this analysis. Since pre-
dictability and position are highly correlated (r = 0.41), it is
conceivable that the effect was related to position rather than
to predictability. This possibility was examined in the rmMRA
where effects of predictability and position were estimated
within onemodel. Neither word predictability nor the interac-
tion of predictability and frequency affected P200 amplitudes
in the rmMRA. The variance was absorbed by word position
better accounting for this effect. Thus, on the basis of the
present results, we cannot conclude that predictability influ-
encedword recognition at this latency. This is at oddswith the
results of Sereno et al. (2003) reporting that context affected
lexical access of ambiguous words and marginally facilitated
processing of low-frequencywords. The conflicting results can
be attributed to differences between the studies. Sereno et al.
experimentally manipulated the context, in which selected
ambiguous words appeared. In the present study, neither
predictability nor sentences realized extreme conditions for
context effects and, consequently, were not significant.
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Surprisingly, the strongest influence on the P200 was pro-
vided byword position. The rmMRAmade clear that amplitude
modulations were not linear but a quadratic function of posi-
tion. Words occurring early or late in sentences elicited larger
amplitudes than words in middle positions. This effect was
independent of word length. One might wonder whether the
frequency effect on the P200 was an artifact of the influence of
position. However, this is very unlikely because both position
and frequency were included as predictors in the regression
models at the same time. If the frequency effectwas an artifact
of word position, the latter would have absorbed the variance
accounted for by frequency, which was not the case. Further-
more, the correlation between position and frequency is small
(r = 0.12). A systematic effect of position would have caused a
rather unsystematic effect of frequency.

Reasons for the decreasing P200 towards the center of a
sentence and for subsequent increasing amplitudes remain
unclear on the basis of the present data. There were no a priori
theoretical considerations predicting a quadratic word posi-
tion effect.We included the quadratic term in the rmMRA only
after visual inspection of the data, so suggestions for a solution
are speculative. One possibility is that increasing working
memory load in the middle of a sentence caused a negative
shift, tantamount to decreasing P200 amplitudes. At the begin-
ning of a sentence, only very few words must be kept in mind;
towards the end of a sentence, high predictability facilitates
recognition and semantic integration of new words and con-
textual information eases remembering the content of the
sentence. Compared to this, the effort of recognizing and
integrating upcoming words while keeping the previous sen-
tence fragment in mind might be largest in the middle of a
sentence. Another possibility is that different parts of a sen-
tence vary in importance of semantic content. In the German
language, it is very likely that the words carrying the most
important meaning for a fast and correct understanding occur
in the middle of a sentence (e.g., a verb). Expectancy or
“alertness” could have caused a long-term negative variation
whenever a sentence proceeded towards its major contents.
Finally, it is also possible that the position effect was specific
for the stimulus material of the present study. In any case,
further investigation is necessary to clarify the nature of the
word position effect.

3.2. N400

Both the rmANOVA and the rmMRA showed a strong effect of
predictability on the N400. This is in line with findings of
previous experiments (e.g., Kutas andHillyard, 1984; Kutas and
Van Petten, 1994). N400 amplitudes are inversely correlated
with predictability. Obviously, this measure is an appropriate
predictor for modulations of N400 amplitudes. Considering
that none of the sentences contained any semantic violation
and that no artificially strong variation of predictability was
intendedduring the construction of the stimulusmaterial, this
result corroborates once more the robustness of the N400
effect.

In the rmANOVAwith the factors of frequency andposition,
we found a strong main effect of frequency; N400 amplitudes
decreased with augmenting frequency, which corresponds to
previous reports (Rugg, 1990; Van Petten and Kutas, 1990). The
size of this effect was attenuated in the rmANOVA with the
factors frequency and predictability indicating that either
predictability or the interaction term absorbed variance of
frequency. The rmMRAs supported this hypothesis: Linear and
quadratic frequency terms were strongly reliable only when
the interaction of predictability and frequency was excluded
from themodel. Obviously, the interaction termwas enough to
explain frequency-related variance.

The interactions of predictability and frequency as well as
of position and frequency were significant in the rmANOVAs,
pointing to an interplay of frequency and context information
on the N400. Given the argument that predictability and
position capture similar concepts, the two interactions may
account for the same effect: The frequency effect degraded as
context information increased. The results of the rmMRA
confirmed this view showing a strong interaction of predict-
ability and frequency while the interaction of position and
frequency was not significant. Although the interaction plot
clearly reveals that the frequency effect was decreasing with
increasing word position (Fig. 4, panel 5), this pattern could be
completely due to the interaction of predictability and fre-
quency (Fig. 4, panel 4). Thus, the joint effect of predictability
and frequency is sufficient to account for the decrease of the
frequency effect across words; there may be no independent
contribution of word position. The finding is in line with our
hypothesis that predictability as a more direct measure of
context information accounts better for N400 effects than
word position.

Further support is provided regarding the main effect of
position. Amplitudes were smaller for words occurring late in
a sentence as reported in previous studies (Van Petten and
Kutas, 1990, 1991; Van Petten, 1993). While the rmANOVA
showed a statistical trend, the rmMRAs made clear that the
effect of word position was absorbed by predictability. The
position effect was significant only when predictability as well
as the interaction of predictability and frequency were
removed from the rmMRA model.

The results can be compared directly with Van Petten and
Kutas' (1990, 1991) reports of a word position effect and a
significant interaction of position and frequency. Except for
the final words, they used word position as a metric for the
strength of contextual information. They proposed that the
decline of N400 amplitudes and the decrease of the frequency
effect across the sentence reflect the influence of contextual
constraint rather than word position. Given that predictability
better accounted for the N400 effects than position and
therefore absorbed the variance of position and frequency,
our data strengthen Van Petten and Kutas' (1990) view that
position “can serve as metric of the semantic and structural
links that differentiate a sentence from a string of unconnect-
ed words” (p. 388).

3.3. Frequency and predictability: lexical and post-lexical
processes?

The decreasing N400 amplitude with increasing predictability
demonstrates that context facilitates word processing and
language comprehension, independent of the position of the
word in the sentence. Additionally, we showed that the
interaction of predictability and frequency absorbed the
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variance accounted for by the interaction of word position and
frequency. Thus, word position in a sentence reflects primar-
ily the build-up of contextual constraint (Van Petten and
Kutas, 1990, 1991, see also Van Petten, 1993). Do the results
also confirm the proposal that context supersedes the role of
word frequency concerning lexical access while we read
through a sentence? It was concluded that “word frequency
plays a role in these processes onlywhenmeaningful semantic
context is weak, as at the beginning of a congruent sentence
[…]” (Van Petten, 1993, p. 498). This interpretation implies a
unidirectional influence of contextual constraint on the
impact of word frequency in a sense that context can affect
the relevance of frequency but not the otherway round. On the
basis of the present results, we propose that word frequency
and context interact in a bidirectional way.

Concerning the N400 amplitudes, there are two crucial
illustrations in Fig. 4. First, panel 5 reveals that the frequency
effect decreases with increasing word position. In principle,
this replicates Van Petten and Kutas' (1990, 1991) results. One
might conclude that, on the N400, frequency does not play a
role as context increases. Remember, however, that the term
was only significant when the interaction between predict-
ability and frequency was left out of the rmMRA.

The second relevant illustration relates to the interaction of
predictability and frequency (panel 4). This plot allows an
alternative interpretation: the effect of contextual information
(indicated by predictability) is larger for low-frequency than for
high-frequency words. In other words, frequency modulates
the strength of the predictability effect on the N400.

This conclusion is also in line with the frequency effects in
the rmMRAs. Our results suggest that high-frequency words
are lexically accessed before 200ms indicated by the quadratic
trend of frequency in the P200 epoch (Fig. 3, panel 1).
Predictability did not influence this fast process. As was
shown in the analysis using a reduced rmMRA model, fre-
quency affected the N400 amplitude following a quadratic
trend: amplitudes of low-frequency words differed from high-
frequencywords,whereas differenceswere smaller among the
latter. This indicates that, at this later time, especially low-
frequencywordswere accessed. The variance accounted for by
frequency on the N400 was absorbed by the interaction of
predictability and frequency. Thus, both lexical access of low-
frequency words and the effect of predictability affected ERPs
at the same latency. The interaction suggests that both
variables act on the same stage of word recognition. Lexical
access of low-frequency words benefits from contextual
information and this benefit is strongly reduced in the case
of high-frequency words having been recognized earlier (see
also Becker, 1979; Sereno et al., 2003).

Interactive models of word recognition (e.g., Grainger and
Jacobs, 1996; McClelland, 1987; Morton, 1969) can explain the
present results, because they allow feedback from higher to
lower levels of processing. However, the findings present a
problem for modular approaches (e.g., Fodor, 1983; Forster,
1979) assuming distinct and sequential lexical and post-lexical
stages, at least using word frequency and predictability as
primary indicators. Alternatively, one would need to establish
post-lexical sources in word-frequency and lexical sources in
word-predictability norms. After all, there is a substantial
correlation (r = 0.41) between them.
In sum, word recognition seems to be a gradual process
rather than a strict sequence of distinct stages (see also
Coulson and Federmeier, in press). Also, Van Petten (1995)
pointed out that “althoughword frequency is a lexical variable,
the human language-processing system does not always
respect the boundary between lexical and sentential proces-
sing” (p. 520). The brain seems to use all sources of information
as soon as they become available in order to provide a fast and
correct understanding.

3.4. Conclusions

The purpose of this study was to investigate joint effects of
frequency and predictability on early and late ERP compo-
nents, taking into account also effects of word position. In the
present experiment, we reconciled several isolated findings of
previous studies and contributed a few novel results: High-
frequency words triggered a differential ERP response in the
first 200 ms after stimulus onset; there was no evidence for an
effect of predictability on this early P200 component. In con-
trast, predictability correlated strongly and linearly with the
N400 amplitude. In addition, the N400 amplitude exhibited a
larger predictability effect for low-frequency than for high-
frequency words, compatible with a late-access interpretation
of low-frequency words. Finally, P200 amplitudes decreased
across sentence-initial words and increased towards the end
of a sentence. Apparently, this effect does not relate to the
recognition of the currently presented word, at least not ex-
clusively. In general, the results suggest different time con-
straints but also overlapping processes for frequency-related
lexical access and predictability-related post-lexical integra-
tion during reading.
4. Experimental procedures

4.1. Participants

Fifty students (19 to 35 years; 19 males) of the Catholic Uni-
versity of Eichstätt-Ingolstadtwere paid for their participation.
All were native German speakers and had normal or corrected-
to-normal vision. Forty-three subjects were right-handed.

4.2. Stimuli

The Potsdam Sentence Corpus (PSC) comprises 144 German
sentences (1138 words) with a large variety of grammatical
structures. Themean sentence length is 7.9wordswith a range
from 5 to 11 words. Words were divided into three categories
with respect to thevariable frequencyandpredictability. These
categories were used for repeated measures analyses of va-
riance (rmANOVAs) and for the visualization of effects;
repeated measures multiple regression analyses (rmMRAs)
were based on the continuous values of these predictors.

Word frequencies of the corpus words are based on DWDS
norms (DasDigitaleWörterbuch der deutschenSprache des 20.
Jahrhunderts), which are computed on a total of 100 million
words (Geyken, in press; Geyken et al., in preparation). Each of
three logarithmic frequency classes containsat least 254words
[class 1 (log frequency: 0 to 1): 254 words, mean: 0.46, SD: 0.29;



Table 4 – Number of words, mean values, and standard
deviations (SD) of logarithmic frequency and
logit-transformed predictability for open-class words on
eight word positions in the Potsdam Sentence Corpus

Word
position

Number
of

words

Frequency Predictability

Mean SD Mean SD

1 38 1.58 0.90 −2.42 0.30
2 90 1.54 0.98 −2.29 0.59
3 90 1.76 1.18 −1.95 0.79
4 72 1.97 1.28 −1.74 0.89
5 72 1.73 1.11 −1.54 1.08
6 76 2.08 1.32 −1.24 1.08
7 37 1.76 1.12 −1.41 1.07
8 22 2.02 0.94 −1.06 1.02
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class 2 (log frequency: 1 to 2.5): 406 words, mean: 1.82, SD: 0.42;
class 3 (log frequency: 2.5 to max.): 478 words, mean: 3.57, SD:
0.55].

Predictability of words was collected in an independent
norming study from 282 native speakers of German ranging in
age from17 to 80 years. Participants guessed the first word of the
unknown sentence and entered it via the keyboard. In return, the
computer presented the first word of the original sentence.
Thereafter, subjects entered their guess for the second word
followed by presentation of the second word of the original
sentence. This procedure continued until a period indicated the
end of a sentence. Correct words stayed on the screen. The order
of sentences was randomized. Twenty subjects generated
predictions for all of the 144 sentences. The other participants
worked through a quarter of the corpus. Collapsing the complete
and partial protocols across participants yielded 83 complete
protocols. The obtained predictability values were logit-trans-
formed [logit = 0.5 * ln(pred / (1 − pred))]. Predictabilities of zero
were replaced with 1/(2*83) and those of perfectly predicted
wordswith (2 * 83 − 1) / (2 * 83),where 83 represents thenumber of
complete predictability protocols (Cohen and Cohen, 1975). That
means that for awordwith predictability 0.5 the odds of guessing
are 0.5/0.5 = 1, and consequently the log odds of guessing are
ln(1) = 0. Thus, words with predictabilities larger than 0.5 yield
positive logits and predictabilities smaller than 0.5 negative
logits. The logit transformation corrects for the dependency of
mean probabilities (P) and associated standard deviations (SD)
[i.e., SD = P(1 − P)] by stretching the tail of the distribution (see
also Kliegl et al., 2004). The corpus contains at least 254 words
in each of three logit-based predictability classes [class 1 (−2.553
to −2.0): 464 words, mean: −2.47 SD: 0.14; class 2 (−2.0 to −1.0):
254 words, mean: −1.46, SD: 0.29; class 3 (−1.0 to 2.553):
420 words, mean: −0.04, SD: 0.77].

4.3. Procedure

Subjects were seated at a distance of 60 cm from the monitor
and were instructed to read the sentences for comprehension.
After ten practice trials, the 144 sentences were presented
word by word (Font: Courier New, Size: 12) in randomized
order. The first word of each sentence was preceded by a
fixation cross presented for 500 ms in the middle of the
monitor and followed by a blank screen for another 500 ms.
Stimuli togetherwith the adjacent punctuationwere displayed
for 250 ms in black on a white screen in the center of the
monitor. The stimulus onset asynchrony (SOA) was 700 ms. A
multiple-choice question was presented after 27% of the
sentences; subjects pressed one of three buttons to indicate
their answer. After the remaining sentences, an array of aste-
risks appeared for 2000 ms (preceded and followed by a
1000 ms blank screen) in the center of the screen. During the
presentation of a question or asterisks, subjects were allowed
to blink. They took a break of 10 min after the first half of the
experiment. Sessions lasted about 1.5 h.

4.4. Electrophysiological recording

An electrode cap (ElectroCap International) was used to record
EEG data on 26 scalp locations (FP1, FP2, AFZ, FZ, F3, F4, F7, F8,
FC3, FC4, FC5, FC6, CZ, C3, C4, T7, T8, CP5, CP6, PZ, P3, P4, P7, P8,
O1, O2) corresponding to the revised 10/20 International
System. All scalp electrodes and one electrode on the right
mastoid were originally referenced to one electrode on the left
mastoid. Data were converted offline to average reference. In
addition, two horizontal (situated at the outer left and outer
right canthus) and two vertical EOG electrodes (above and
below the right eye) recorded bipolarly eye movements and
blinks. Impedances of scalp electrodes were kept below 5 kΩ.
Data were recorded continuously with a sampling rate of
256 Hz. The recordings were high- and low-pass filtered by
amplifier adjustment of 0.1 and 100 Hz, respectively.

4.5. Analyses

EEG data contaminated by artifacts were rejected offline via an
automatic algorithm and visual inspection. Data of two
subjects had to be completely removed, one because of loss
of data due to technical problems and one because of a former
neurological disease. From the remaining 48 subjects, a total
of 11.43% of trials was eliminated. The continuous EEG
recording was divided into 800 ms epochs beginning 100 ms
before stimulus onset. Data were analyzed relative to a
baseline of 100 ms preceding each stimulus.

In order to reduce effects due to the large variability of
sentence lengths thosewith less than 7 andmore than 9words
were excluded. Only open-class words were included in the
analyses; closed-class words were eliminated. Additionally,
sentence-finalwordswere removed from the data set. This left
us with a total of 105 sentences comprising 497 open-class
words for statistical analyses. Number of words, mean values,
and standard deviations of three categories of frequency and
predictability are listed in Table 3.

Correlations between frequency and predictability (r = 0.41),
predictability and word position (r = 0.41), and frequency and
position (r = 0.12) were significant (P ≤ 0.01). Descriptive
statistics for the distribution of words across the positions in
sentences are presented in Table 4.

Two timewindowswere chosen for analyses. The selection
of the first window was based on the hypothesis that an early
frequency effect would occur well within the first 200 ms after
the presentation of a stimulus. Visual inspection of the data in
an epoch between 100 and 200 ms post-stimulus revealed
differences between frequency classes on a fronto-central
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positivity peaking at 170 ms1. This component was identified
as P200. We defined the first time window in an interval
between 140 to 200 ms (peak amplitude at 170 ms ± 30 ms) on
fronto-central electrodes (AFZ, FZ, F3, F4, FC3, FC4, FC5, FC6,
CZ, C3, C4). The second epoch ranged from 300 to 500 ms over
centro-occipital electrodes (CZ, C3, C4, CP5, CP6, PZ, P3, P4, P7,
P8, O1, O2), a time window often used in N400 research.

Effects of frequency, predictability, and position on P200
and N400 amplitudes were analyzed in rmANOVAs. According
to the classification in Table 3, words were divided into three
categories of frequency and three categories of predictability.
Also, three classes of word position were generated (positions
1–2: N = 128; positions 3–5: N = 234; positions 6–8: N = 135). On
the basis of these categories, ERP single-averages were
computed for each subject andwere submitted to two separate
3 × 3 rmANOVAs for each of the components: one with fre-
quency (1, 2, 3) and predictability (1, 2, 3), and one with
frequency (1, 2, 3) and position (1–2, 3–5, 6–8) as within-subject
factors. The high correlation between predictability and
position did not permit an ANOVA including both factors at
the same time (i.e., the lack of high predictable words on early
positions would have caused empty cells). Where appropriate,
the Huynh–Feldt correction for the violation of sphericity
(Huynh and Feldt, 1976) was used to adjust degrees of freedom.

The results of the rmANOVAs for each of the components
were scrutinized in separate rmMRAs (Lorch and Myers, 1990,
method 3). In these analyses, the influence of frequency,
predictability, and position together with their interactions
could be tested within one model. Mean single-trial EEG
amplitudes, collapsed across the selected electrodes of the
P200 and the N400 as well as across the sampling points
corresponding to each of the time intervals of the two com-
ponents, were computed for each open-classwordwithin each
subject. This resulted in a total of 21,176 amplitude values per
epoch serving as dependent variables. The rmMRAswere used
to examine P200 and N400 effects of the following six
predictors: Frequency, frequency × frequency, predictability,
position, predictability × frequency, and position × frequency.
Additionally, position × position was included in the rmMRA
on P200 amplitudes since visual inspection suggested a
quadratic trend. All analyses are based on continuous predic-
tor values instead of the categories utilized in the rmANOVAs.
The redundancy of the predictors was checked by removing
one predictor at a time and by computing the decrease of
explained variance for the reduced model.

4.6. Plots

Figs. 1 and 2 present grand average plots for three frequency
and predictability classes corresponding to the categories
defined in Table 3, respectively. The grand averages were
computed for open-class words collapsed across all word
positions except for final ones in sentences comprising 7 to
9 words.

The effects of the predictors on ERP amplitudes in rmMRAs
for open-class words are visualized in Figs. 3 and 4. For
1 We also tested for amplitude differences in the epoch from 100
to 140 ms post-stimulus; however, effects in this time window
appeared to be unstable.
purposes of illustration, the predictor frequency (panels 1) was
divided into six quantiles, each containing roughly the same
number of data points (N ≥ 3506). The same procedure was
applied to predictability (panels 2): six quantiles were com-
puted, but since the proportion of words not predictable at all
was very high, the lowest quantile contained more data
(N = 9405) than the rest of the quantiles (N ≥ 1859). Conse-
quently, the second quantile did not capture any data at all.
Thus, only five points are plotted for predictability. No quan-
tiles were computed for word position (panels 3), since each
word was uniquely attributable to one value. For the purpose
of noise reduction, the number of bins was reduced in the
interaction plots (panels 4 and 5): frequency and predictability
were categorized according to three classes defined in Table 3;
word position (panels 5) was divided into three classes
(positions 1–2, 3–5, and 6–8).

Open symbols in each panel of Figs. 3 and 4 reflect the
mean of empirical single-trial EEG amplitudes collapsed
across the selected electrodes and across sampling points for
each time window, across words of corresponding categories,
and across subjects. Error bars reflect the 99% within-subject
confidence intervals (Loftus and Masson, 1994).
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