
Although researchers have measured eye
movements since 1879, recent technological
innovations have allowed scientists a much more
accurate view of the relationship between eye

movements and reading1. Prior to about 1975,
researchers tended to focus primarily on the
observable surface aspects of eye movements in
reading and there were few attempts to use eye-
movement data to infer underlying cognitive
processes in reading2. However, recent research on
eye movements during reading has undergone both a
paradigm shift and a resurgence – instead of being
viewed as a simple observable behavior that is
unrelated to reading, many researchers now use
eye-movement data as a vital tool for understanding
the on-line operations involved in the reading
process. For the most part, eye-movement data have
proved to be highly reliable and useful in inferring
the moment-to-moment processing of individual
words and larger segments of text. However, a

For many researchers, eye-movement measures have become instrumental in

revealing the moment-to-moment activity of the mind during reading. In

general, there has been a great deal of consistency across studies within the

eye-movement literature, and researchers have discovered and examined many

variables involved in the reading process that affect the nature of readers’ eye

movements. Despite remarkable progress, however, there are still a number of

issues to be resolved. In this article, we discuss three controversial issues:

(1) the extent to which eye-movement behavior is affected by low-level

oculomotor factors versus higher-level cognitive processes; (2) how much

information is extracted from the right of fixation; and (3) whether readers

process information from more than one word at a time.
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number of debates have also emerged from the study
of eye movements, and our goal in this article is to
delineate three of these controversies. We hope that
by outlining some of the more contentious issues,
researchers will become more aware of the
prominent questions which need to be resolved
before we can develop a comprehensive model of
eye movements in reading.

Prior to discussing these controversies, we will
provide some background information on eye
movements in reading. Although it might seem as if
our eyes sweep smoothly across the page as we read,
in reality, reading consists of a series of saccades
(whereby the eyes jump from one location to another)
and fixations (during which the eyes remain
relatively stable). For skilled readers, the average
saccade length is 7–9 letter spaces and the average
fixation duration is 200–250 ms. About 10–15% of
the time, skilled readers make ‘regressions’back to
previously read text (see Box 1). During fluent
reading, saccades move the eyes so that a word can be
focused on the retina so that it can be more effectively
processed (see Box 2). However, both saccade length
and fixation duration fluctuate considerably from
word to word, and a goal of eye-movement research
is to account for this variability.

The three controversies we discuss range from
relatively low-level perceptual concerns to higher-level
questions involving theoretical/computational models
of eye-movement control in reading. One sustained
and prevalent controversy has been whether eye
movements during reading are controlled by 
low-level oculomotor (i.e. mechanical) strategies or
whether they are influenced by moment-to-moment
cognitive processes. A second controversy deals with
the types of information extracted from parafoveal
vision in reading. Although most researchers agree
that low-level information is obtained from the word
to the right of fixation in reading, there is some
disagreement regarding whether higher-level
information (e.g. word meaning) is obtained. A third
controversy concerns the relationship between
attention and eye movements. Many current models
assume that words are processed serially and that
attention moves sequentially from one word to the
next. However, some recent findings appear to
challenge this assumption.

Oculomotor versus processing models

We mentioned above that many researchers view
eye movements as a valid measure of on-line cognitive
processing during reading. However, not all
researchers share this opinion3,4. In general, two
categories of eye-movement control models have
emerged: oculomotor models and processing models.
Researchers favoring low-level oculomotor accounts
claim that eye movements are only obliquely
associated with higher-level processing (e.g. lexical,
syntactic, contextual) and that the decisions of when
and where to move the eyes are primarily determined

by low-level (non-linguistic) visuomotor factors3–5. As
such, the decision of where to move the eyes is said to
be determined by visual properties of text (e.g. word
length, spaces between words) and by limitations in
visual acuity. In addition, fixation durations are
posited to be primarily a function of where the eyes
fixate within a word. In support of an oculomotor
approach, studies which have examined landing
positions within words have found that the location of
fixations within words is not random, rather there is a
preferred viewing location – readers’ eyes tend to land
somewhere between the middle and the beginning of
words6–8. Moreover, for long words, readers initially
fixate near the beginning of the word and then make
a refixation near the end of the word9–13.

Strategy-tactics model
The ‘strategy-tactics model’4,5,14,15 is one of the more
prominent oculomotor models.Proponents of this
model account for landing position effects by positing
that words are identified most accurately and are less
likely to be refixated when they are fixated just to the
left of the middle of the word (where identification is
maximal in isolated word recognition experiments).
As such, according to the ‘risky’ strategy inherent in
the model, readers move their eyes in order to fixate
on this optimal viewing position within each word.
Readers may also adopt a more ‘careful’ strategy:
when the eyes land on a nonoptimal location, a
refixation is needed and the eyes are moved to the
other end of the word. Thus, the probability of
refixation is a function of lower level visual factors
(i.e. where the eyes landed in the word) and does not
depend on higher-level lexical processes. Moreover,
lexical factors (such as word frequency) only influence
fixation durations in two cases: when there is a single
long fixation on a word or when there are two
fixations (the second of these fixations may then be
modulated by linguistic factors).

Counter to these predictions, Rayner et al. found
that readers were more likely to refixate on low-
frequency words than on high-frequency words16. In
addition, word frequency was found to have an effect
on the first of two fixations in cases where readers
made two fixations on a word. Thus, although
oculomotor models have been instrumental in
revealing the relationship between eye movements
and reading processes, they appear to be limited in
scope. Specifically, such models have focused almost
exclusively on the lower lever oculomotor factors
involved in reading, but have not addressed the
influence of higher-level cognitive factors. In support
of the oculomotor approach, low-level variables such
as word length have been found to strongly influence
both where readers fixate next and the amount of time
a reader fixates on a word16–18. Moreover, when
readers are asked to move their eyes over text-like
material (where all letters in the text have been
replaced with z’s), many of the characteristics of eye
movements in reading are preserved19, although there
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are some clear differences in fixation times20.
However, fixation times have also been found to be
affected by a number of lexical, syntactic, and
discourse variables21–24. Even when low-level factors
such as word length are held constant, word frequency,
in particular, has been shown to have a profound effect

on fixation times as readers spend more time fixating
lower frequency words, which are less likely to be
encountered during reading, and less time fixating
higher frequency words16,25–28. In addition, when
words are highly predictable from previous context,
readers tend to fixate on them for less time21–24.

Review

As readers become more proficient, their
eye-movement behavior changes (see
Table I). Less skilled readers (beginner, poor,
and dyslexic readers) typically have longer
fixations, shorter saccades, and make more
fixations (including regressions) than skilled
readers. Although it has been suggested
that faulty eye movements cause reading
problems, it is more likely that eye
movements are a reflection of reading
problems and not the cause of thema.

Saccade size in reading can be
measured in terms of degrees of visual
angle or in terms of number of letter
spaces. The appropriate measure to use
is letter spaces since the number of
letters traversed by saccades is relatively
invariant when the same text is read at
different distances, even though the letter
spaces subtend different visual anglesb,c.

One might infer from Table I that skilled
readers fixate nearly every word while
they read (because they make 94 fixations
per 100 words). However, although most
words are fixated, many are skipped (so
fixation of each word is not necessary) and
some are fixated more than once. Content
words are fixated about 85% of the time,
although function words (which are
shorter) are fixated only about 35% of the
timed,e. As word length increases, the
probability of fixating (and refixating) a
word increasesf; 2–3 letter words are
fixated around 25% of the time, whereas
words 8 letters or longer are almost
always fixated (and are often refixated).

The fact that some words are skipped
and some are refixated makes it difficult to
measure processing time for a wordg.
Using mean fixation duration is
inadequate because it underestimates the

time the eyes are on a word. For example,
in Fig. I, the word grouchy has two
fixations (for 202 ms and 182 ms; thus, the
average fixation duration would be
192 ms) before the eyes move to the next
word. Using only words that are fixated
once (single fixation duration) is
problematic because some words are
refixated (grouchy) and many words are
skipped. Therefore, the most common
measures used are first fixation duration
(the duration of the first fixation on a word
regardless of whether it is the only fixation
or the first of multiple fixations; 202 ms for
grouchy) and gaze duration (the sum of all
fixations on a word prior to moving to
another word; 384 ms for grouchy). A final
measure is the total time on the word,
including regressions (378 ms for read).
Because total time includes subsequent
regressive fixations, it is not diagnostic of
initial processing time. Other measures,
such as the probability of skipping, the
probability of regression, initial landing
position, spillover time (duration of the
fixation following the target word) and so
on, are also typically examined.

In cases when the unit of analysis is
larger than a word, first pass reading time
(the sum of the individual fixations) is
generally used as the primary measure.
However, there is controversy about how

to best analyze larger regions of text,
particularly when readers make
regressionsa,h. In general, it is important to
distinguish between first-pass and
second-pass (re-reading) time for the
region. When regressions occur, it is
appropriate to use a procedure in which
first pass reading time represents the sum
of all fixations starting in a region and
ending with the first forward saccade past
the region under considerationh,i.
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Box 1. Eye-movement characteristics

Table I. Developmental characteristics of eye movements during reading

Grade levela

1 2 3 4 5 6 Adult

Fixation duration (ms) 355 306 286 266 255 240 233
Fixations per 100 words 191 151 131 121 117 106 94
Frequency of regressions (%) 28 26 25 26 26 22 14
a Grade 1 children in the US are typically 6 years old, when reading instruction begins.

Jerry is usually quite grouchy until he has had his morning coffee and read the paper.

Fixations * * * * * * * * * * * * *

Order 1 2 3 4 5 7 6 8 9 10 11 13 12

Duration (ms) 311 218 266 202182 233 178 193 215 227 233 145 288

Fig. I. An example of a reader’s eye fixations during reading. Note that there is considerable variability in
fixation time (fixation durations range from 145 ms to 311 ms) and saccade length (which ranges between 3 and
15 letter spaces). Average fixation duration is 222 ms and average forward saccade length is 8.1 letter spaces. Of
the 13 fixations, two (fixations 7 and 13) are regressions (with an average saccade length of 7.5 letter spaces).
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Given that frequency and predictability influence
fixation time, researchers favoring a processing
account believe that fixation times are primarily
influenced by lexical factors and moment-to-moment
comprehension processes. In general, processing
theorists don’t exclude the influence of low-level
oculomotor factors, but they think that their influence
on fixation time is small relative to the influence of
cognitive factors. Thus, although they believe that the

decision of when to move the eyes (how long to fixate)
is strongly influenced by cognitive processing, the
decision of where to move the eyes is primarily a
function of oculomotor and visual factors29 (with
perhaps some influence from linguistic factors).

E-Z Reader Model
One recent processing model which embodies such a
framework is the ‘E-Z Reader’29–32 (and see also

Review

The main reason we make saccades so
frequently is because of acuity
limitations. In reading, our visual field
can be divided into three different regions
with respect to our fixation point: foveal,
parafoveal and peripheral. Although
acuity is very good in the fovea (the
central 2 degrees of vision), it is not
nearly as good in the parafovea (which
extends to 5 degrees on either side of
fixation), and it is even poorer in the
periphery (the region beyond the
parafovea). Hence, we move our eyes to
place the fovea on that part of the text we
want to see clearly.

How much information can be
obtained in a given eye fixation? To
determine the answer to this question, the
classic eye-contingent display change
techniques were developed (see Fig. I). In
the moving-window technique, the text is
perturbed except for an experimenter-
defined window region around the point
of fixationa. Readers are free to move their
eyes wherever they wish, but the amount
of information that is available on each
fixation is controlled in that wherever the
reader looks, text is visible within the
window (but the text outside of the
window is perturbed). In the example in
Fig. I, the spaces between words are not
preserved outside this window, whereas
in other cases, the spaces are preserved.
In the moving-mask technique, wherever
the reader fixates, a mask obscures the
text around fixation whilst normal text is
presented beyond the mask regionb. Just
as with the moving window, the size of the
mask can be varied. In the boundary
technique, a single critical target word is
initially replaced by a non-word or by
another word c. When the reader’s
saccade crosses over an invisible
boundary location in the text, the initially
displayed stimulus is replaced by the
target word. If a reader obtained
information from the initially presented

stimulus, any inconsistency between
what was available on the fixation after
crossing the boundary and what was
processed on the prior fixation (when
information about the initial stimulus
was processed) should be reflected in the
fixation time on the target word.

Studies using these techniques have
indicated that the perceptual span is
relatively small (see Ref. d for a
summary). For readers of English, the
span extends from the beginning of the
currently fixated word (but no more than
3–4 letters to the left of fixation) to about
14–15 letter spaces to the right of fixation.
However, information needed to identify
words is obtained only out to about
7–8 letters to the right of fixation.
Readers also focus their attention so that

information is not acquired from below
the currently fixated linee. Finally, the
characteristics of the writing system and
reading skill have major impacts on the
size of the perceptual spand.
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Box 2. Perceptual span issues

(a) until he has had his morning coffee and read the paper. Normal text
*

(b) xxxxxxxxxxxxxxxs morningxxxxxxxxxxxxxxxxxxxxx.
*

Moving window
xxxxxxxxxxxxxxxxxxxxning coffxxxxxxxxxxxxxxxxx.

*

(c) until he has had hixxxxxxxxxcoffee and read the paper.
*

Moving mask
until he has had his xxxxxxxxxoffee and read the paper.

*

(d) until he has had his morning bottle and read the paper.
*

Boundary
until he has had his morning coffee and read the paper.

*

Fig. I. Examples of the moving window, moving mask, and boundary paradigms. The first line shows a normal
line of text with the fixation location marked by an asterisk. The next two lines show an example of two
consecutive fixations with a window of 9 letter spaces (with other letters and spaces replaced by x’s). The next
two lines are an example of two consecutive fixations with a moving mask. The bottom two lines show an
example with the boundary paradigm. The first line in the boundary example shows the text prior to the display
change. When the reader’s saccade crosses and invisible boundary location (the g in morning), the initially
displayed stimulus (bottle) is replaced by the target word (coffee). The change occurs during the saccade so that
the reader is not aware of the change.
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Ref. 33 for a precursor of the model). In its current
instantiation, E-Z Reader accounts for a number of
variables which have been found to influence both
the when and where of eye movements, and it has
been implemented as a computational model (and
can hence be used to both simulate and predict eye-
movement behavior). In general, E-Z Reader
includes four processes: a familiarity check, the
completion of lexical access, the programming of
saccades, and the saccades themselves. Upon first
fixating a word, the familiarity check begins. At the
same time, lexical access (i.e. word recognition) of the
fixated word begins, but the familiarity check is
completed first. Once the familiarity check has been
completed, an initial eye-movement program to the
next word is initiated and the lexical access process
continues (in parallel), either of which may be
completed first. Finally, lexical access is completed
(the word is recognized). Although a thorough
description of the model is beyond the scope of this
article, E-Z Reader has been able to account for many
findings from the eye-movement literature.

Although there have been some attempts to
implement oculomotor models15, such endeavors
have not accounted for as wide a range of eye-movement
phenomena as has E-Z Reader. The onus is thus on
proponents of oculomotor models to provide the
degree of formalism and testability that has arisen
from processing models34.

The extraction of information from parafoveal vision

Recently, there has been growing interest in the type
of information obtained from parafoveal vision. One
simple indication that readers process parafoveal
words in some fashion is that short function
words35–38 and words that are highly predictable
from the preceding context are more likely to be
skipped21–23 than arewords which are not
predictable. Such a pattern in skipping rates
indicates that readers obtain information from not
only the currently fixated word, but from the next
(parafoveal) word as well.

In addition to skipping, parafoveal information
clearly affects how far readers move their eyes and
where the eyes land in a word. Thus, saccade length
is influenced by both the length of the fixated word
and the word to the right of fixation6,35,39. Likewise,
where the eyes land in a word is influenced by how
far away from the word the eyes were on the prior
fixation (the launch site): if the launch site is
further away, the eyes tend to land closer to the
beginning of the newly fixated word than if the
launch site is closer to the beginning of that
word7,16. Also, if the beginning of a word contains an
orthographically irregular letter cluster, the initial
landing position of the eyes deviates towards the
beginning of the word40,41. These effects are all due
to low-level factors. However, to what extent does
higher-order semantic information influence where
the eyes land? Underwood et al. embedded two

types of target words in sentences13: those that were
either highly identifiable from their beginning
letters (e.g. quarantine) or from their ending letters
(e.g. underneath). They found that saccades into
parafoveal words were longer when the informative
information was located towards the end of the
word compared with the beginning, suggesting that
some aspect of meaning was processed in the
parafovea. However, this result was not replicated
in more finely controlled experiments11,40. More
recently, it was found that readers’ initial fixations
were shifted towards the ends of words which were
preceded by semantically associated prime words,
although the effect was only found for
high-frequency targets (and when the preceding
fixation was close to the beginning of the target
word)42. On the other hand, other recent 
studies confirmed that although predictable 
words are skipped more frequently than
unpredictable words, the landing position in the
word is little influenced by predictability or
contextual constraint16,43.

Parafoveal-preview benefit
There is also interest in the extent to which
parafoveal words influence fixation times and how
word information that is partially processed on one
fixation is completed on the next1,44. Given that both
the bounds of visual acuity and the width of the
perceptual span (see Box 2) allow readers to
perceive information in the parafovea, it is not
surprising that information is obtained from the
word to the right of the currently fixated word.
Specifically, in experiments using the paradigms
described in Box 2, it has been demonstrated that
useful information is obtained from parafoveal
words on fixation n that facilitates processing of
that word on fixation n+1. Furthermore, if
parafoveal information is denied, reading rates
decrease rapidly45. This advantage gained by the
availability of useful information in the parafovea
is termed ‘parafoveal-preview benefit’. However,
although it is clear that readers process some
degree of information from the parafovea, there is
controversy as to the conditions and/or limits of
such processing.

The earliest experiment using the boundary
paradigm (Box 2) indicated that readers at least
glean some low-level information from the
parafovea46. A number of studies have also found
that readers obtain sub-lexical information from the
parafovea such as partial word information47,48

(i.e. from the first three letters of the parafoveal
word) and phonological information49. However, one
important question is whether higher-level
processing of lexical and semantic information takes
place parafoveally. Inhoff and Rayner found that
more information is extracted from a high-frequency
parafoveal word compared with a low-frequency
parafoveal word indicating that some level of

Review
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parafoveal lexical processing is possible26. 
Balota et al. also found that the degree of
contextual constraint affected subsequent fixation
times on parafoveal words21. Specifically, the
extraction of information from the parafovea was
more efficient when parafoveal words were highly
constrained by sentential context compared with
when they were not.

Despite the finding that lexical and sub-lexical
information may be gleaned from the parafovea, it
appears that semantic information (i.e. meaning) is
not integrated across consecutive fixations. 
Rayner et al. used the boundary paradigm
(see Boxes 2 and 3) and presented readers with 
four types of parafoveal previews to the right of a
currently fixated target word50: baseline (tune),
orthographically similar (turc), semantically related
(song), or semantically unrelated (door). They only
found parafoveal-preview benefit in the baseline and
orthographically similar conditions, and there was
no difference in preview benefit between the
semantically related and unrelated conditions.
They concluded that semantic information was not
obtained from the parafovea. More recently,
Altarriba et al. used fluent Spanish–English
bilinguals in a boundary study51 in which previews
were either cognates (crema was a preview for
cream), non-cognate translations (fuerte, which
means strong, was a preview for strong),

pseudo-cognates (words that are unrelated except
that they are orthographically similar such as grasa
as a preview for grass), or unrelated words (grito as
a preview for sweet). There was no preview benefit
from non-cognate translations and whatever benefit
accrued from cognates was due to orthographic
overlap of preview and target as there was as much
preview benefit for the pseudo-cognates as for the
cognates. The finding that there is no benefit from
meaning overlap is surprising since there are many
studies showing that a semantically related prime
presented in the fovea facilitates processing of a
subsequently presented target word (using priming
paradigms)52. Perhaps the difference is due to the
fact that the quality of information obtained from
parafoveal vision is not as precise as that which can
be obtained from the fovea.

Finally, Henderson and Ferriera found that when
processing of the currently fixated word is difficult
(as in the case of a low-frequency word), parafoveal
processing becomes less efficient and parafoveal-
preview benefits disappear25 (see also Ref. 53).
However, another study showed that this effect was
limited to cases where the eyes fixated on the last
three characters of the foveal word54. Hence, one task
for researchers interested in the extent of parafoveal
processing is to not only determine the extent or
limitations of parafoveal processing, but to delineate
the conditions under which parafoveal processing is
minimal or optimal.

Is word processing in reading serial or parallel?

Most of the research done to examine parafoveal
processing has focused on the fact that information
extracted from the parafoveal word decreases
fixation time on that word when it is subsequently
fixated. However, relatively few studies have
examined whether information located in the
parafovea influences the processing of the currently
fixated word or, in similar terms, whether two or
more words may be processed in parallel during
reading. Some models of reading, like E-Z Reader,
posit that attention during reading acts like a
spotlight shifting from word to word in a serial
fashion. Given this general framework, parafoveal
preview benefits are obtained when attention shifts
off the currently fixated word to the next word in the
text. Hence, even though the eyes remain on the
currently fixated word, attention moves to the word
to the right of fixation, and processing of that word
begins. However, since processing may not take
place in the absence of attention, current models
presume that information from the right parafoveal
region doesn’t have an effect on processing of the
currently fixated word.

Until recently, many researchers agreed that
word processing during reading was serial.
Carpenter and Just used linear regression
techniques to examine the influence of word length
and frequency of parafoveal words55; they concluded

Review

Many studies involve eye-movement contingent display changes (see
Box 2). In such studies, text displayed on a computer screen is manipulated
as a function of where the eyes are fixated. One important issue is whether
the ‘flashes’ (i.e. phosphor persistence) from display changes themselves
influence eye-movement behavior. If this were the case, the utilization of
display changes could introduce an unwanted artifact into the resultsa.

A number of factors indicate that display changes per se do not
influence eye-movement behavior. Although the speed of display
changes in early studies was limited, current technology has improved to
a point where display changes may be implemented within
approximately 5–7 ms. Given the speed of the display change, in moving
window experiments, readers remain unaware that a display change took
place as long as the mask outside the window is not too distinctiveb.
Moreover, in a more direct study of display changes, Inhoff et al.
manipulated both the refresh rate of the computer screen (with faster
refresh rates corresponding to less flicker) as well as phosphor
persistence (i.e. how long the masked word’s luminance persisted after
the mask was presented) and found that effects resulting from display
changes were not affected by flicker or persistence for display change
rates that are typically usedc.
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that the word to the right of fixation had only small
effects on the processing of the currently fixated
word. Similarly, other experiments have found that
the frequency of the word to the right of fixation had
no effect on the fixation time on the currently
fixated word56,57.

Evidence for parallel processing
In contrast to these studies, some recent findings
have indicated that words may be, to some extent
and under some circumstances, processed in
parallel. Murray used a word comparison task in
which readers had to detect a one-word difference in
meaning between two sentences58. Fixation times
on target words were shorter when the word to the
right of the currently fixated word constituted a
plausible continuation of the sentence as compared
with an implausible continuation. Similarly,
Kennedy instructed participants to judge whether
successively fixated words were identical or
synonymous to one another, and found that viewing
durations on target words were longer when the
first three letters of the word to the right of fixation
had a high frequency of occurrence as compared
with a low frequency of occurrence59.

Although these findings seem to indicate that two
words can be processed in parallel, it is possible that
such effects only emerge in ‘non-natural’ reading
tasks. Specifically, it could be argued that studies
that have failed to find parallel processing during
reading have used tasks which required readers to
read sentences, whereas studies that have
succeeded in finding such effects have used tasks
that do not mimic reading so clearly. However, Inhoff
et al. used a normal reading task and found that
fixation times on target words were a function of
information to the right of the target, although the
influence of such information was limited60. Fixation
times were shorter when the word to the right of

fixation was consistent with prior sentence context
compared with when the word to the right of fixation
simply consisted of a random letter string,
indicating that readers extracted some information
from the right of fixation while concurrently
processing target words.

If two words were processed in parallel, this
would be problematic for serial attention-shift
models (such as E-Z Reader). Research has
demonstrated that low-level visual features and
some forms of sub-lexical information (e.g. partial
word identity, beginning letters) are extracted from
the parafoveal word in parallel with processing the
currently fixated word. If such concurrent
parafoveal-on-foveal effects are limited to the
processing of low-level information, there would be
no inconsistency with serial models. Thus, in
addition to the serial (spotlight) attention
mechanism currently implemented by the E-Z
Reader model, a second attention mechanism
dealing solely with low-level processing could be
invoked; such an idea would not be inconsistent with
the model. However, if higher-level semantic
information is extracted from foveal and parafoveal
words simultaneously, then more major
modifications to serial spotlight models will be
necessary. One potential solution would be to
abandon the serial framework of attention in models
of eye-movement control and replace it with a
parallel mechanism. One viable candidate for such a
mechanism might be some type of gradient model.
Here, attentional resources would be distributed
along a gradient similar to a normal distribution
curve, with maximal attentional resources peaking
at or near the fixated area and gradually decreasing
towards the periphery. Words would thus be
processed in parallel, although the processing of
information would be most accurate at the center of
the attentional distribution, and the shape of the
attentional distribution would change with task
demands. However, such a model seems rather
complicated and would be difficult to implement in
a computational model. Thus, a challenge for
proponents of a parallel mechanism of attention
during reading is to delineate the parameters of
such a framework.

Conclusions

Although the use of eye-movement data has greatly
enhanced our understanding of the reading process,
there are still a number of outstanding issues that
need to be addressed. We have delineated three of the
more prominent controversies, including the nature
of eye-movement control itself, the extent of
parafoveal processing, and whether words are
processed serially or in parallel. Better
understanding of these issues will not only help
researchers focus on the more contentious issues in
eye-movement research, but will also aid in the
understanding of the reading process in general.

Review

• What are the relative influences of low-level
perceptual factors and higher-level cognitive
factors on eye movements during reading?

• What causes regressive eye movements
during reading?

• What precisely influences skipping and
refixations on words?

• How much and what kinds of information can
be extracted from the parafovea? Why doesn’t
semantic information in the parafovea affect
where readers fixate within words and for how
long? Are there circumstances when semantic
information does have an effect?

• What are the limits of processing during
reading? Can two or more words be processed
in parallel, or are readers always limited to
processing one word at a time?

Questions for future research
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