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Abstract

Laboratory-based models of oculomotor strategy that differ in the amount and type of top-down information were evaluated

against a baseline case of random scanning for predicting the gaze patterns of subjects performing a real-world activity––walking to

a target. Images of four subjects� eyes and field of view were simultaneously recorded as they performed the mobility task. Offline

analyses generated movies of the eye on scene and a categorization scheme was used to classify the locations of the fixations. Frames

from each subject�s eye-on-scene movie served as input to the models, and the location of each model�s predicted fixations was
classified using the same categorization scheme.

The results showed that models with no top-down information (visual salience model) or with only coarse feature information

performed no better than a random scanner; the models� ordered fixation locations (gaze pattern) matched less than a quarter of the
subjects� gaze patterns. A model that used only geographic information outperformed the random scanner and matched approxi-

mately a third of the gaze patterns. The best performance was obtained from an oculomotor strategy that used both coarse feature

and geographic information, matching nearly half the gaze patterns (48%). Thus, a model that uses top-down information about a

target�s coarse features and general vicinity does a fairly good job predicting fixation behavior, but it does not fully specify the gaze
pattern of a subject walking to a target. Additional information is required, perhaps in the form of finer feature information or

knowledge of a task�s procedure.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

While engaged in most activities, ‘‘the eye moves in a

series of quick jerks and pauses’’ (Buswell, 1935). The
‘‘quick jerks’’, or saccadic eye movements, occur about

three to four times a second. These eye movements

redirect the retinal area capable of receiving the most

finely detailed information (typically the fovea) from

place to place to obtain information with high spatial

resolution. The ‘‘pauses’’ or fixations are thought to

minimize image blur and allow the visual system time

for processing the image. The factors that determine

what parts of the image to fixate or attend 1 has been a

matter of controversy; some claim that the choice of

fixation location is best described as random (Kundel,

Nodine, Thickman, & Toto, 1987), others suggest that
stimulus factors are critical determinants (Geisler &

Chou, 1995; Itti & Koch, 2000; Itti, Koch, & Niebur,

1998; Niebur & Koch, 1996; Parkhurst, Law, & Niebur,

2002; Toet, Kooi, Bijl, & Valeton, 1998), still others

claim that cognitive factors or expectations play a key

role (Land & Horwood, 1995; Land & McLeod, 2000;
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1 While it is known that one can shift attention without shifting gaze,

visual attention typically precedes a saccade to the same location

(Inhoff, Pollatsek, Posner, & Rayner, 1989; Kowler, Anderson, Dosher,

& Blaser, 1995; Shepherd, Findlay, & Hockey, 1986). Electrophysio-

logical data indicate that the two share some of the same neurophy-

siology (Posner & Petersen, 1990) supporting the view that the two are

tightly linked (Corbetta, 1998; Kustov & Robinson, 1996).
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Land, Mennie, & Rusted, 1999; Land & Lee, 1994;

Wolfe, Cave, & Franzel, 1989).

Until 1935, when Buswell published his systematic

study of where people direct their eyes (or gaze) while

looking at pictures, direction of gaze had been studied

almost exclusively with the task of reading (Buswell,

1935). The change from reading to picture viewing in-

troduced a new task and another significant dimension
(verticality) to the study of gaze direction. More recently

gaze patterns have been obtained as people engage in

more physical activities such as driving, (Kito, Harag-

uchi, Funatsu, Sato, & Kondo, 1989; Land & Horwood,

1995; Land, 1992; Land, 1998; Land & Lee, 1994; Wann

& Swapp, 2000) tea making, (Land et al., 1999) and

cricket playing (Land & McLeod, 2000). These tasks

have added yet more complexity to the stimulus. Still,
the development of corresponding models of oculomo-

tor strategies has failed to keep pace with the newly

emerging descriptive studies.

The models of oculomotor strategies that exist have

been derived from laboratory-based studies of visual

search (Kundel et al., 1987; Treisman & Gelade, 1980;

Wolfe et al., 1989) and can differ in the amount of em-

phasis placed on bottom-up (stimulus dependent) or
top-down (task dependent) factors. One bottom-up

oculomotor strategy, the visual salience model, is based

on the premise that a person directs his or her gaze at the

most visually salient location in the retinal image (Itti &

Koch, 2000; Itti et al., 1998; Koch & Ullman, 1985;

Theeuwes & Burger, 1998). Common to this strategy is

the concept of a topographically organized ‘‘saliency

map’’, which assigns a visual salience value to each point
in the image. The saliency map is similar to the ‘‘master

map’’ of Treisman and Gelade�s (1980) which is derived
from the integration of various feature maps (intensity,

color, orientation). The visual salience strategy receives

support from studies that have compared human per-

formance against a computational model of visual sa-

lience (Itti & Koch, 2000; Itti et al., 1998). Itti et al.�s
visual salience model allocates attention according to
the rank order of the visual salience in an image. Their

model is able to predict performance on pop-out at-

tention tasks. Using the same model to compute the

visual salience of fixation locations of subjects free view-

ing pictures of scenes, Parkhurst et al. found a higher

visual salience value for the fixation locations than a

calculated visual salience value from randomly sampled

image locations (Parkhurst et al., 2002).
Unlike the bottom-up, visual salience model, the

guided search oculomotor strategy is based on the idea

that information about the nature of the target differ-

entially weights specific features and can bias the di-

rection of gaze. With guided search models, (Hoffman,

1978, 1979; Neisser, 1967; Wolfe et al., 1989) display

items are evaluated according to their similarity to the

expected target in an initial stage of parallel processing.

Items that are similar are considered candidate targets

and are passed onto a serial comparison stage for closer

inspection (using selective attention and gaze). In this

model, attention (and gaze) is directed to the item with

the highest similarity value with subsequent shifts to

items of decreasing similarity.

While the laboratory allows control over many ex-

traneous factors as well as the opportunity to manipu-
late variables of choice, the ultimate goal in behavioral

research is to apply laboratory-based knowledge to

performance in the real world. Oculomotor strategies

have not been formally tested in the few real-world eye-

movement studies that have been conducted. But the

tight coupling between gaze and task-relevant informa-

tion in some studies suggests that top-down information

may play a key role in guiding fixation (Hayhoe, Ben-
singer, & Ballard, 1998; Land et al., 1999; Land & Lee,

1994). For example, in a driving study, subjects directed

their gaze 80% of the time to a specific geographic lo-

cation when entering a bend in the road, i.e., the tangent

point of the curve (Land & Lee, 1994). And in a tea-

making task, subjects fixated specific items relevant to

the task, e.g., teakettle and cup (Land et al., 1999). If

top-down information does play a role in directing gaze
in real-world tasks, then the question arises as to what

kind of top-down information is used.

In this study we developed a method for quantifying

gaze patterns in a real-world task to allow testing of

various oculomotor models. We evaluated oculomotor

strategies, which differed in the amount and type of top-

down information used to guide fixation, against a

baseline case of random scanning. Four oculomotor
strategies were tested: no top-down information (visual

salience model), information about the target�s features
(feature model), information about the general vicinity

of the target (geographic model), information about

both the target�s features and general vicinity (feature–
geographic model). Walking to a target was chosen as

the real-world task. It is commonly performed in daily

living, has a well-defined target, and falls somewhere
between free viewing and driving in terms of attention

constraints.

2. Methods

2.1. Subjects

We tested four visually normal persons. Their bin-

ocular visual acuity, corrected if necessary, measured

with a Lighthouse ETDRS acuity chart (Ferris, Kassoff,

Bresnick, & Bailey, 1982), was better than 20/25. Their

binocular log peak contrast sensitivity, measured with
the Pelli–Robson chart (Pelli, Robson, & Wilkens,

1988), was better than 1.65. Table 1 lists the ages, visual

function measures, and travel times of the subjects.
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2.2. Mobility task

The mobility route consisted of the corridors of a

floor in an office building that had never been seen by

any of the subjects. An experimenter followed the sub-

ject throughout the route and recited standardized di-

rections at specified points along the way. Each subject

was instructed to walk safely, at his or her normal pace,
following the directions given. The directions for the

section of the route analyzed for this study were ‘‘As you

walk down this hall, find the fifth door on the left and

turn to go through’’. The distance for this section of the

route was 24.8 m. Fig. 1 shows a picture of the hallway,

indicating the target with an arrow.

2.3. Apparatus to record eye and scene during mobility

Images of eye and scene were recorded with an

ISCAN (ETL-410) non-invasive, headband-mounted,

eye and scene video-based imaging system, modified to
be battery operated (Fig. 2). The system is lightweight

(total weight 15 oz) consisting of a headband with two

cameras, lenses, and a beam splitter. One camera im-

ages the subject�s right eye and another camera (with a
wide lens––88�� 60� field of view) images the scene.

The camera outputs were recorded on digital video

camcorders (Canon ZR10) carried in a backpack and

analyzed offline. The camcorders were synchronized
by recording a tone on the audio channels of the two

camcorders, simultaneously. Prior to mounting the eye-

tracker headband, a silicon swim cap was fit on the

subject�s head to ensure positional stability.

2.4. Procedure to record eye and scene during mobility

The eyetracker was calibrated before the mobility

data were collected. The subject was seated, placed on a

bitebar, and instructed to fixate sequentially each of five

points of a calibration pattern positioned at a distance

of 1.3 m. The recorded values were used in the offline
analysis (see below) to re-locate ISCAN eye-position

values to direction of gaze. Upon completion of the

mobility data collection, the eye recording was fed into

Table 1

Subject characteristics

Subject Age (years) Visual acuity LogMAR LogCS Travel time (s)

NPD 49.4 20/14 )0.16 1.7 21.3

NJF 57.8 20/18 )0.06 1.9 27.2

NEL 66.2 20/22 0.04 1.7 23.8

NLT 36.2 20/15 )0.12 1.9 19.3

Fig. 1. Picture of the hallway segment of the mobility route analyzed

for this study. Instructions given to the subject were ‘‘As you walk

down this hall, find the fifth door on the left and turn to go through’’.

The numbers on the picture indicate the doorways on the left, and the

arrow indicates the location of the target, the fifth door on the left.

Fig. 2. Recording apparatus mounted on a person. Images of eye and scene were recorded with an ISCAN headband-mounted, eye and line-of-sight

scene video-based imaging system. The system was modified to be battery operated. The cameras outputs were recorded on synchronized, digital

video camcorders carried in a backpack and analyzed offline.
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the ISCAN processing board that was externally trig-

gered by the synchronizing tone. The ISCAN software

uses the pupil and corneal reflection to identify the an-

gular position of the eye. The scene recording used a

video capture board (Broadway by Data Translation)

whose software was modified to trigger on the syn-

chronization tone on the videotape. In-house software

was developed to transform the eye position data in
ISCAN units to screen coordinates. Software was also

developed to adjust eye position in accordance with the

barrel distortion of the image introduced by the scene

camera of the ISCAN system, as is clearly seen in Fig. 6.

We used a lookup table based on the actual measured

degree of distortion across the image. Movies of the eye-

on-scene were made for each subject, which a graphic

character was superimposed on each frame of the movie
at the calculated eye position.

Fixations were identified using a velocity threshold of

eye position relative to a scene landmark. To do this, for

each frame of the scene movie, a distant stationary

landmark was digitized and its coordinates stored. The

change in the distance between the eye and the landmark

was computed across consecutive frames. A fixation was

defined as the eye-on-scene position remaining within
1.6� on two frames, equivalent to a velocity threshold of
24�/s. (It should be pointed out that the method of an-
alyzing eye position from images stored on videotape,

where the sampling rate is 30 frames/s, produced a

temporal averaging of the eye position signal.) A crite-

rion value of 1.6� was chosen as a compromise between
the values of saccade detection used by Epelboim et al.

(1997) (position change > 2�) and Zelinsky and Shein-
berg (1997) (saccade onset velocity > 20�/s). Fixations
detected using our criterion were initially cross-checked

by visual inspection of the eye-on-scene movies. The

good agreement between fixations detected by the two

procedures led us to adopt the 1.6� criterion value. 2 The
frames of the scene movie that correspond to each

identified fixation will be referred to as ‘‘fixation

frames’’. By definition, each fixation is associated with a
minimum of two fixation frames.

2.5. Models implementation

The stimulus for the subjects in our study was a

temporally varying view of the environment. This view

was sampled in time (30 frames/s) and space (88�� 60�
image at 4 pixels/�) and stored on videotape for later
analyses. The models that we tested were developed

to process static images. In an attempt to provide the
models with information most similar to what was

available to the subjects, we used the fixation frames of

each subject as input to the models. (Only one frame per

fixation was used, the initial frame.) This approach

eliminated any potential difference in temporal sampling

between model and subject and resulted in the same

number of predicted fixation locations across models for

each subject.
To generate the predictions for the baseline case of

random scanning, we implemented a random scanner

loosely based on that of Kundel et al. (1987). The scan-

ner randomly selected the x and y coordinates for each
fixation location. The scanner had no memory for past

fixations, and, therefore, multiple fixations could be

made to the same location. Two versions of the random

scanner were tested. In the ‘‘totally random’’ version,
the scanner randomly selected x and y coordinates from
anywhere on the image. In the ‘‘realistic’’ version, the

scanner randomly selected the direction of the next fix-

ation from one of 360�, and the distance to the next

fixation was randomly selected from a probability den-

sity function of real eye movements (shown in Fig. 3).

The function was an exponential with a mean of 4.4�.
For the visual salience model, we used a computer

implementation (Itti & Koch, 2000) of a model devel-

oped by Itti et al. (1998) (This model is described in

detail in Itti et al., 1998). (Details specific to our im-

plementation are explicitly stated in this section.) This

model, derived from the hypotheses and concepts pro-

posed by Koch and Ullman (1985), is related to Treis-

man and Gelade�s (1980) ‘‘feature integration theory’’ of
attention. The input to the model is a digital color image
that is filtered and progressively sub-sampled in a

Gaussian pyramid scheme (Adelson, Anderson, Bergen,

Burt, & Ogden, 1984; Burt & Adelson, 1983) to produce

nine spatial scales of the image. Various feature maps

are computed by a set of center-surround operations

performed across spatial scales (i.e., the difference be-

tween a fine and a coarse scale). Based on the properties

of the neural mechanisms of the primate visual cortex,
the features are intensity, color (red–green, blue–yellow)

and orientation (0�, 45�, 90�, 135�). Calculations were
made at six center-surround combinations yielding 42

feature maps: 6 for intensity, 12 for color and 24 for

orientation. The maps encode the local feature contrasts

at various combinations of center and surround scales.

A parameter file can be invoked to bias or differentially

weight the coefficients for the feature maps. In the sa-

2 Image expansion during forward motion introduces a change

between the eye and landmark. The magnitude of change is a function

of the speed of the observer and the position of the environmental

element. Elements that are eccentric to the observer�s direction of

motion and are close up introduce the most change with forward

motion. In our study where average forward motion was 1.1 m/s,

image positions of eye > 15� from the center of the display will

produce a change greater than the 1.6� threshold criterion if the

underlying environmental element is closer than 2 m from the observer.

A quick view of the movies suggests that very few eye positions were

on elements this close. However, to ensure that no actual fixations were

bypassed as a consequence of forward-motion changes, we visually re-

checked the movie frames that corresponded to image positions of

eye > 15� from display center. For each subject the number of frames

was fewer than 10%. The visual inspection resulted in no additional

fixations being identified.
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liency model, all coefficients are 1. Each feature map

is normalized, summed across scales, and the three
resulting maps (intensity, color, and orientation) are

summed to create a single two-dimensional saliency

map. The most salient location, found by a winner-take-

all algorithm, determines the location of the next fixa-

tion. To prevent permanent fixating on the most salient

location the model includes an ‘‘inhibition of return’’

(IOR) component. Once a location has been fixated,

that location is subsequently inhibited, and the next
fixation shifts to the next most salient location. In our

study we manually implemented this property since the

model did not keep track of its predicted locations

across input images. We visually inspected each pre-

dicted location, checking it against a log of previously

predicted locations. If the location had been previously

chosen, it was eliminated and the model chose the next

most salient location for its prediction. The model also

incorporates a ‘‘proximity preference’’, that is, when two

locations are similar in salience, the closer location is

chosen for the next fixation. Fig. 4 shows a sample im-

age (Fig. 4a) and the corresponding saliency map (Fig.

4b). The location of the highest visual salience, and

therefore the predicted fixation location, is represented
as a small square centered in the circle in Fig. 4c.

The feature model is based on the idea that infor-

mation about the nature of the target differentially

weights specific features and can bias the direction of

gaze. In the present study, the task was ‘‘to find the fifth

door on the left and turn to go through’’, making the

fifth door on the left the target. To implement the fea-

ture model, we used the visual salience model described
above and modified the parameter file to maximize the

weights of the feature map that codes for ‘‘vertical’’ and

‘‘large’’. To do this, we set to 1 the coefficient for the 0�
orientation (vertical) feature at the center-surround

combination with the lowest sub-sampled center and

intermediate sub-sampled surround. The coefficients for

the other orientations and center-surround combina-

tions were set to 0. We eliminated the IOR component
of the visual salience model. (This was done to be con-

sistent with current guided search models.) No other

changes were made to the visual salience computer

program.

The geographic model is based on the idea that in-

formation about the general vicinity of the target biases

the spatial location of fixation. To implement the geo-

graphic model for the current task, we applied the visual
salience model described above, restricted fixations to

the left side of the image, and eliminated the IOR

component.

The feature–geographic model is a combination of the

feature model and the geographic model. With this

model, information about both the target�s features and
the general vicinity of the target are used to guide fixa-

tion. To implement this model we used the feature
model described above but restricted fixations to the left

side of the image.

2.6. Analysis

A categorical analysis, similar to that used by Stark

and colleagues (Choi, Mosley, & Stark, 1995; Stark &

Choi, 1996), was used to analyze the data. We chose this

type of analysis instead of a pixel-based (x; y, coordi-
nates) scheme because of our interest in the scene ele-

ments that subjects fixate (e.g. doors, posters, floor)

rather than the pixel locations on the image. The dis-

tance between the actual eye position and a model�s
prediction may be only a few pixels, yet the eye and

model prediction may be directed at different objects.

For example, if the eye is directed at the bottom corner
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Fig. 3. Probability density functions of the eye-movement amplitudes

(in degrees of visual angle) for the subjects. The curves represent the

best-fit exponential functions. Means are indicated in the upper right

corner of each graph.
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of a door and the predicted location is on the floor

nearby, a pixel-based scheme would rate the similarity

between the two high whereas a categorical type of

analysis (using an object classification scheme) would

rate the similarity low. In our study the categories were

defined according to meaningful partitions. The images

of the route were divided into 20 categories (e.g. first

door on the left, wall between the first and second doors
on the right, floor, ceiling). Each category was assigned

a letter. Fig. 5a shows a cartoon of a scene illustrating

some of the categories.

For each fixation, the position of the eye relative to

the scene was classified into one of the 20 categories,

using the video frame at the beginning of each fixation

(Fig. 5b). A completed classification for each person was

a string of letters representing the sequence of fixation

locations (Fig. 5c).

For each model, the predicted location for each fix-

ation was classified into one of the 20 pre-defined cate-
gories in the same manner as described above for the

actual eye data. A sequence alignment analysis, designed

for protein analysis (CLUSTALW from the MACVec-

Fig. 4. Implementation of the visual salience model. (a) A grayscale version of a sample input image to the model. (b) Feature maps (intensity, color,

and orientation) are computed by a set of center-surround operations performed across spatial scales. Each feature map is normalized, summed

across scales, and the resulting maps are summed to create a single two-dimensional saliency map. (c) The most salient location determines the

location of the next fixation (a small square centered in the circle).

Fig. 5. Illustration of steps in analysis. (a) Caricature to illustrate various scene categories. (b) Classification of fixations. (c) Sample of fixation data

string. (d) Portion of a sample sequence alignment (dashes indicate inserted spaces to achieve optimal alignment).
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tor software by Oxford Scientific), was used to deter-

mine the optimal alignment of the model predictions

and the data. The parameters of the algorithm were set

for maximizing alignment while minimizing the number

of gaps. The algorithm used a residue weight matrix

(BLOSUM series) and incorporated penalties for

opening gaps (penalty set at 10) and extending gaps (set

at 0.05). The gap-opening penalty gives the cost of
opening a new gap of any length and the gap-extension

penalty gives the cost of every item in a gap. Since it is

usually difficult to align sequences that are most different

from all other sequences, the program delayed the

alignment of sequences that were less than 40% identical

to any other sequence until all other sequences were

aligned. The number of matched pairs was determined

from the alignment results and the percent similarity
between the two gaze patterns was calculated. Fig. 5d

illustrates a portion of a sample alignment. Gray boxes

indicate the matched pairs. To minimize selection bias

from the computation of the random scanning, we ran

the two random scanners on the fixation frames of each

subject 10 times and calculated the optimal alignment

for each of the samples. The mean of the percent simi-

larity scores served as the final similarity score.

3. Results

To obtain an estimate of the magnitude of error in

our method of positioning eye on scene we measured the

distance between known image coordinates and calcu-

lated eye-on-scene positions as subjects looked at points
in the world. The results showed that the average error

of eye-on-scene locations was less than 0.5� for screen
positions as far as 37� from scene center. To illustrate

the relative size of possible position error relative to the

scene Fig. 6 shows a video frame with the fixation

marked by a black square at the arrow flanked by white

squares that extend out by 0.5� on each side.

Fig. 7 shows pictures of the scene with superimposed

alphanumeric characters to indicate the fixation loca-

tions of the subjects. The left panel shows the data

collected in the first 7.5 s, and the right panel, data

collected between 7.5 and 15.0 s. Data collected beyond

15 s are counted in the analysis but not displayed here.

The complete eye-on-scene recordings can be seen by

viewing the movies at the Web site, http://162.129.
125.249/gaze.html. In the movies, a red cross indicates

the eye position and a blue cross indicates the occur-

rence of a blink.

A comparison across subjects illustrates several

common characteristics within the group. One, most

fixations (71%–96%, mean¼ 83%) were on the side of
the scene that contained the target, i.e., the left side.

Two, most fixations (59%–82%, mean¼ 69%) were on
the doors on the left side. Three, approximately two-

thirds of the fixations (53%–72%, mean 62%) were on

previously fixated left-side doors.

The degree to which the models� predicted gaze pat-
terns matched the subjects� gaze patterns is shown in

Table 2. The similarity scores were determined from the

sequence alignment analyses. The two leftmost data

columns show the similarity scores for the random
scanners. The mean scores for the ‘‘totally random’’ and

the ‘‘realistic’’ versions were 22.2% and 23.3%, respec-

tively. (Since the similarity scores for the two random

scanners were comparable, further references to analyses

with the random scanner pertain to the realistic version.)

The mean similarity scores for the visual salience model

and the feature model were 21.3% and 20.8%, respec-

tively. Both models generated gaze patterns that were no
more similar to the subjects� gaze patterns than those

generated by a random scanning procedure. On the

contrary, the models that incorporated information

about the general vicinity of the target, i.e., the geo-

graphic model and the feature–geographic model, gen-

erated gaze patterns that were more similar to the

subjects� gaze patterns than that generated by the ran-
dom scanner. The mean similarity score for the geo-
graphic model was 33.8%, significantly higher than the

similarity score of the random scanner, tð3Þ ¼ 5:42,
p < 0:01. The mean similarity score of the feature–geo-
graphic model was 47.5%, also significantly higher than

the score of the random scanner, tð3Þ ¼ 6:8, p < 0:01.
In the above section we discussed the similarity be-

tween the models and data with respect to the sequences

of fixations, or gaze patterns. In that analysis, the order
in which the fixations were executed mattered. To de-

termine whether the models predict where the subjects

looked, regardless of order, we can compare the distri-

butions of actual fixations and the models� predicted
fixations. Distributions are shown for the subjects� fix-
ations (Fig. 8a), and the models� predictions. The labels
on the horizontal axis are the scene categories with the

labels on the lower axis abbreviated category names and

Fig. 6. Precision of fixation measurements. A video frame with the

fixation marked by a black square at the arrow flanked by white

squares that extend out by 0.5� on each side.
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the labels on the upper axis in Fig. 8a arbitrary codes to

serve as keys for labels in Figs. 5a and 9. Multiple oc-

currences of a category are coded by an ‘‘L’’ or ‘‘R’’

suffix, to indicate side of scene, followed by a number to

Table 2

Similarity scores

Random scanning Visual salience (%) Feature model (%) Geographic model (%) Feature–geographic (%)

Totally random (%) Realistic (%)

NEL 24 23 26 22 28 48

NJF 18 22 16 14 34 42

NLT 18 20 16 17 34 38

NPD 29 28 27 30 39 62

Mean 22.2 23.3 21.3 20.8 33.8 47.5

Percent similarity between the models� predictions and subjects� data.

Fig. 7. Pictures of the scene with superimposed alphanumeric characters illustrating the eye-on-scene locations for the fixations of the subjects. The

left panel shows the data collected in the first 7.5 s, and the right panel, data collected between 7.5 and 15.0 s. Fixation order is coded by the sequence:

1–9, a–z, A–Z.
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indicate order of occurrence relative to the beginning of

the route. For example, ‘‘doorL1’’ indicates the first left-

side door and ‘‘wallL23’’ indicates the wall on the left
side between the second and third doors. (The wall

categories include any existing posters on the walls.)

As shown in Fig. 8a, the left-side doors are fixated

most often, and with the exception of the first door on

the right (doorR1), the right side and ceiling are fixated

the least. Fig. 8b shows the distribution of the visual

salience model predictions. The distribution is more

evenly apportioned across the categories compared to

the distribution of the actual fixations (Fig. 8a). The

variability in the model predictions (depicted by the size

of the error bars) results from the different input images
of the four subjects. Changes in head position as well as

differences in the timing of fixations along the route

cause different images in the camera�s field of view across
subjects.

The visual-salience model predicted that the catego-

ries: ahead, ceiling, floor, nearest left wall (wallL1), and

the fifth door on the right (doorR5) have the most fix-

ations. Over half of the fixations were predicted to fall
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Fig. 8. Fixation percentages for subject data and four models. Frequency distributions of (a) actual fixations, and predicted fixations from (b) the

visual salience model, (c) the feature model, (d) the geographic model, and (e) the feature–geographic model for the various categories. Labels on the

lower x-axes are abbreviated category names. Multiple occurrences of a category are coded by an ‘‘L’’ or ‘‘R’’ suffix, to indicate side of scene,
followed by a number to indicate order of occurrence relative to the beginning of the route. Labels on the upper x-axis are arbitrary category codes
that serve as keys.
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into these categories. This is in contrast to the subjects�
data where only 12% of the fixations were classified into

those five categories. The feature model does no better

at predicting the distribution of actual fixations. The

most notable characteristic of the feature model distri-

bution (Fig. 8c) is the large number of fixations in the

‘‘ahead’’ category (32%), an area that happens to con-
tain a door. In practice, only 5% of the subjects� fixa-
tions were classified in the ‘‘ahead’’ category. In addition

to doors, the feature model predicted a number of fix-

ations on posters, presumably due to the fact that poster

edges have features similar to the target, i.e., vertical and

large. Fig. 8d shows the geographic model distribution.

The truncated shape reveals the left-side restriction and

resembles, in part, the skewed distribution of the actual
fixations. But unlike the actual fixation distribution

where fixations are primarily on the doors, the majority

of the fixations predicted by the geographic model are

classified in the categories ‘‘ahead’’, ‘‘ceiling’’, and the

left-side posters/walls. The distribution for the feature–

geographic model (Fig. 8e) has the truncated shape of

the geographic model but a lower number of fixations in

the ‘‘ahead’’ and ‘‘ceiling’’ categories, due to the bias for
‘‘vertical’’ and ‘‘large’’.

A hierarchical clustering method was used to deter-

mine whether there was an obvious pattern in subjects�
fixation behavior among the various categories (e.g. left

doors, right doors, floor). Hierarchical clustering is a

multivariate technique that groups together elements

that have similar values. In our case the categories with

similar fixation percentages were grouped together. The
process starts with each element as its own cluster and

the distance between each cluster is calculated. The two

clusters that are closest together are combined and the

process reiterates until all points are in a final cluster.

The clustering tree can be cut at various points. A cut

at two produces a cluster consisting of the left-side

doors and a cluster consisting of the other categories.

With three clusters, the cluster of left-side doors breaks
down into two clusters: the near left-side doors (doorL1,

doorL2, and doorL3) and the far left-side doors (doorL4

and doorL5). A cut at four produces the clustering rep-

resented in Fig. 9. The clusters are differentiated by dif-

ferent symbols (and each datum is labeled with its

specific category code). Listed in order of percentage

from most fixated to least, the four clusters consist of the

following: (1) the far left-side doors, (2) the near left-side
doors, (3) left-side posters and walls, nearest right-side

Fig. 9. Bivariate fits of predicted and actual fixations. Predicted frequencies from (a) the visual salience model, (b) the feature model, (c) the geo-

graphic model, and the (d) feature–geographic model plotted against the actual fixation percentages for the various categories. Bivariate normal

density ellipses show where 95% of the data are expected to lie. The correlations between the predicted percentages of fixations of the models and the

actual frequencies are shown in the upper right corners of each graph. Each datum is coded by a cluster symbol and a category code (the key for the

category codes is in Fig. 8a).

342 K.A. Turano et al. / Vision Research 43 (2003) 333–346



door, ahead, and floor, and (4) the right-side doors,

right-side posters and walls, and ceiling.

Fig. 9 shows how the predicted fixation distribution

of the various models relates to the actual fixation dis-

tribution. Fig. 9a plots the distribution of the visual

salience model against the actual fixation distribution.

The correlation coefficient, r, for the two distributions
was )0.23, ns, indicating no significant linear relation-
ship between the predictions of the visual salience model

and where the subjects actually looked while walking.

The bivariate normal density ellipse shows where 95% of

the data are expected to lie. The one category that falls

outside the density contour is the target. The target is

fixated more frequently than the model predicts. No

significant linear relationship was found between the

actual fixation distribution and the feature model dis-
tribution, r ¼ �0:12, ns (Fig. 9b) or the geographic

model distribution, r ¼ 0:19, ns (Fig. 9c). The only sig-
nificant linear relationship that was found between the

actual fixation distribution and a model prediction dis-

tribution was for the feature–geographic model, r ¼
0:53, p < 0:05, (Fig. 9d). The bivariate fit shows that two
categories fall outside the 95% density contour, the

nearest wall/poster on the left side (wallL1) and the tar-
get. With this model, the nearest wall/poster on the left

side is fixated much less frequently than the model

predicts. And the target is fixated much more fre-

quently than the model predicts; this was true for all the

models.

4. Discussion

In this study, we evaluated, against a baseline case of

random scanning, how well various oculomotor strate-

gies predict the gaze patterns of subjects while walking.

Eye and scene images were recorded as each subject
walked to a pre-defined target. From these recordings,

the direction of gaze (eye-on-scene) was determined and

fixations were identified. For each fixation, the direction

of gaze was classified into one of 20 categories, pro-

ducing a sequence of direction-of-gaze categories rep-

resented by a string of letters. Each model generated

predicted fixation locations that were classified in the

same manner as were the actual fixations. An optimal
alignment was determined for each subject�s gaze pat-
tern and each model�s output, and the percent similarity
between the data and model was calculated from the

number of matched pairs.

Both versions of random scanning––one in which the

random scanner chose x and y fixation coordinates from
anywhere on the image and another in which the dis-

tance between fixations was randomly selected from a
distribution of real eye-movement amplitudes––matched

about a quarter (22%–23%) of the gaze patterns of the

subjects.

It is unclear why the ‘‘realistic’’ version of the ran-

dom-scanner did not outperform the ‘‘totally random’’

version in matching the subjects� gaze patterns. The
random scanner in the ‘‘realistic’’ version had knowl-

edge of the real eye-movement amplitudes, and fixations

were drawn from that distribution. The fact that the

random scanner�s selection of fixation direction was

unrestricted must have overwhelmed any advantage
from the knowledge of amplitude. Had we analyzed the

degree of similarity between model and data on a pixel

basis rather than category basis we might have found a

superiority effect of the ‘‘realistic’’ version compared to

the ‘‘totally random’’ version.

The visual salience model matched about the same

percentage of the subjects� gaze patterns as did the

random scanner, 21.3%. The comparability in predictive
power of the visual salience model and the random

scanner demonstrates that an oculomotor strategy based

on the visual salience of the image is no better at pre-

dicting human fixation behavior in this task than an

oculomotor strategy that randomly selects image loca-

tions.

The feature model, also, performed at the same level

as the random scanner in predicting the subjects� gaze
patterns. Only 20.8% of the feature model�s predictions
matched the gaze patterns of the subjects. The low

performance of the feature model may be due in part

from our selection of target features, vertical and large.

These coarsely defined features did not uniquely specify

the target. The model often chose the posters� edges as
the fixation location.

The geographic model outperformed the random
scanning models, matching about a third of the subjects�
gaze patterns. This improvement in predictive power

suggests that the subjects used the information about

the general vicinity of a target to guide their fixations.

However, that fixations sometimes fell on the right side

of the image indicates that the subjects did not feel

constrained to fixate only the left side. To implement the

geographic model, we adopted a liberal interpretation of
the terms ‘‘left side’’. Any spatial location on the left side

of the image qualified as an acceptable fixation location.

This interpretation was perhaps too coarse for the cur-

rent task since in real life left-side doors are located in

the walls. The too-coarse interpretation could explain

the higher percentage of fixations in the categories:

‘‘ahead’’, ‘‘ceiling’’, and ‘‘floor’’ (35%) for the geographic

model compared to the subjects� actual fixations (9%).
The feature–geographic model best predicted the

subjects� gaze patterns. With this model, the image fea-
tures common to the target, vertical and large, were

heavily weighted, and gaze was restricted to the left side

of the image. Even though both sets of information were

coarsely defined, together they were sufficient to increase

the predictive power of the model to nearly twice the

level of a random scanner, visual salience model, or

K.A. Turano et al. / Vision Research 43 (2003) 333–346 343



feature model. The results showed that the feature–

geographic model predicted nearly half (47.5%) the gaze

patterns of the subjects. Furthermore, a linear rela-

tionship between the distributions of fixation percent-

ages for the feature–geographic model and the actual

fixations was demonstrated by a significant correlation

(r ¼ 0:53). This is remarkable given the lax constraint of
the current task and the coarse feature and geographic
information. Presumably the predictive power of this

model would increase even more with a more refined

description of the target�s features. But, even with an

improved description of the target�s features, it is un-
likely that the feature–geographic model would be able

to fully predict the subjects� gaze patterns in the current
task. The model lacks a specified ‘‘procedure’’ that the

subjects may have used to carry out the task (Suppes,
1990). An inspection of the subjects� gaze patterns re-
veals that a significant number of fixations were on

previously fixated doors (62%). The task of finding the

fifth door on the left requires counting the doors and

maintaining in memory the count. The behavior of

‘‘looking back’’ may be related to rehearsing or re-

freshing one�s memory. This idea receives some support
from other eye-movement studies in which working
memory was required and re-fixation behavior was seen

(Ballard, Hayhoe, & Pelz, 1995; Land et al., 1999; Land

& Lee, 1994). Thus, a model that uses information about

a target�s features and its general vicinity does a fairly
good job predicting fixation behavior, but procedural

knowledge may be required to more fully capture the

gaze patterns of subjects� performing an everyday ac-

tivity.
Walking to a target was chosen as the real-world

task, based on the desire to balance the attention de-

mand of the appointed task. Walking down a hallway

toward a goal is not as demanding as driving around a

bend in the road or making tea, yet it does require

more attention than free viewing. In our study, the

target had to be detected among similar and dissimilar

distractors and the subject had to walk to it. In this
relatively unconstrained situation the subject had suf-

ficient time to look around. In practice, the subjects

primarily fixated the left side of the image (see Fig. 7).

However, in a few instances the subjects fixated else-

where (total of 34). One might expect that if visual

salience played a role in directing fixations in the pre-

sent task, in the instances where the subjects did not

fixate on the left side gaze would have been guided by
the visual salience of the image. This was not the case.

In only 7 of the 34 instances did the classification of the

visual salience model prediction match the category of

the actual fixation location. This finding suggests that

visual salience, alone, is not a very useful concept in the

present study.

The oculomotor strategy that one uses may depend

on the rigor of the task demands (attention and time)

and on the ease in detecting the task-relevant compo-

nents. An observation by Land and Lee (1994) lends

some support to this idea. When the task demand of

driving was high (around a bend in the road) drivers�
fixations were tightly bound to task-relevant informa-

tion but when the demand was relaxed (wide road

driving) one driver had many fixations on driving-irrel-

evant information. While it is beyond the scope of
this paper, a more comprehensive assessment of the

oculomotor strategies in real-world tasks would include

various oculomotor strategies tested against the gaze

patterns of subjects performing a broad cross-section of

tasks.

4.1. Relation to other studies

The question of whether visual search theories based

on findings of laboratory-based experiments have any

application to the real world has been addressed previ-

ously. Wolfe (1994) explored the issue in a manner very

different from the present study. He expanded the type of
visual stimuli in his visual search experiments to include

more ‘‘naturalistic’’ stimuli. The stimuli were computer-

generated graphics that resembled aerial views of terrain

(e.g. rivers, lakes). The subjects� task was the same as in
the traditional visual search experiments––to find a

target embedded in a background. Although Wolfe�s
study has more differences than similarities to the pre-

sent study, the rationale for both studies was the same,
to examine the generalizability of the laboratory-based

visual search strategies. Wolfe�s conclusion was that the
rules of visual search defined by artificial stimuli in

laboratory experiments do apply to the continuous,

naturalistic stimuli and may extend to more real-world

situations.

Parkhurst et al. used the visual salience model that we

tested in the present study but they arrived at a different
conclusion concerning the contribution of the visual

salience model (Parkhurst et al., 2002). In their study,

subjects freely viewed images of natural and artificial

scenes while their eye movements were recorded. The

stimulus salience at fixation locations was computed

and compared to the mean salience expected by chance

(computed from saliency values randomly chosen from

the saliency map). The average salience computed from
the fixation locations was higher than that expected by

chance alone. Parkhurst et al. interpreted the results as

providing evidence that stimulus-driven, bottom-up

mechanisms contribute significantly to guiding attention

in natural viewing.

The interpretation of Parkhurst et al. is at odds with

our finding that the visual salience model performed no

better than expected by chance (i.e., the random scan-
ner). However, several differences exist between the two

studies, and it could be that one or more is responsible

for the apparent discrepancy. One difference between the
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studies is the type of analysis performed. In our study we

were interested in knowing how well the visual salience

model predicted where in the scene people directed their

fixation while walking toward a pre-defined target. To

this end, we compared the scene categories of the actual

fixation locations to the scene categories of the predicted

fixation locations of the visual salience model. Parkhurst

et al. used a converse approach in assessing the role of
salience in directing gaze. Rather than comparing the

location of the highest salience in each image to the

actual fixation location, they determined the salience at

the fixation location and compared its magnitude to the

average salience across randomly chosen locations in the

saliency map. This is not the same comparison as per-

formed in the present study nor is the information it

provides the same.
Another difference between studies is the task given

to the subjects. In the Parkhurst et al. study, subjects

were instructed to ‘‘look around’’ at an image. The

stimulus was a static image that was freely viewed for a

period of 5 s. The authors claimed that by avoiding

specific instructions to the subjects they would more

likely do what they normally do when looking at images.

However, one might argue that without having a specific
task in mind (unlike what occurs in everyday experience)

subjects resorted to using the only thing available to

them to guide their fixation, i.e., image salience. In our

study, subjects walked toward a pre-defined target and

the stimulus was a sequence of continuously changing

images. The task was very specific and the target well

defined.

4.2. Limitations of the study

The mobility route that we chose for this study was

very simple. Apart from the subject, the environment

contained no moving objects (e.g. people, cars) or
abrupt fluctuations in environmental conditions (e.g.

drop-offs, severe illumination changes). While this choice

was deliberate in an attempt to minimize the number of

variables in the study, the simplicity of the route may

be viewed as a limitation. This simple route does not

represent the range of environments that we typi-

cally encounter. Different environmental conditions may

produce different gaze patterns. For example, the in-
troduction of new objects into the scene may grab at-

tention and re-direct gaze. Laboratory studies have

shown that newly appearing objects are powerful attr-

actants for attention and fixations (Yantis & Hillstrom,

1994; Yantis & Jonides, 1984, 1996).

The subjects in our study were moving observers,

which raises a potential technicality in the way we tested

the models. The movement of an observer produces
optic flow––a change in the pattern of light intensities

reflected from objects in the environment to the ob-

server�s eye. This motion is a real input to the subject�s

visual system that we did not include as input to the

models. The models were fed static video images––

frames of each subject�s scene movie. (Note that this
input actually favors the models since the image is al-

ready restricted to that selected by the subject via head

movements.) If the motion in optic flow patterns plays a

key role in directing gaze our test would have been bi-

ased since we would have omitted an essential compo-
nent of the stimulus. However, in fairness to our

approach, none of the models that we tested were de-

signed to take into account the motion feature. If optic

flow does play a role in directing gaze it is unclear what

aspect of the pattern is used for fixation (see Cutting,

1986 for suggestions). Moreover at the slow travel

speeds of our subjects (range of 0.8–1.3 m/s) it is unclear

whether the velocity vectors generated from fixating
anything other than nearby objects would be useful.

In conclusion, an oculomotor search strategy that

allows for ‘‘top-down’’ guidance from coarse geographic

and featural information better predicts the visual

scanning behavior of subjects walking toward a target

compared to a random scanning strategy or one based

solely on ‘‘bottom-up’’ stimulus driven factors.
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