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Abstract. An efficient method for the exact numerical
simulation of semi-Markov processes is used to study
minimal models of the control of eye movements in
reading. When we read a text, typical sequences of
fixations form a rather complicated trajectory — almost
like a random walk. Mathematical models of eye
movement control can account for this behavior using
stochastic transition rules between few discrete internal
states, which represent combinations of certain stages of
lexical access and saccade programs. We show that
experimentally observed fixation durations can be
explained by residence-time-dependent transition prob-
abilities. Stochastic processes with this property are
known as semi-Markov processes. For our numerical
simulations we use the minimal process method (Gilles-
pie algorithm), which is an exact and efficient simulation
algorithm for this class of stochastic processes. Within
this mathematical framework, we study different forms
of coupling between eye movements and shifts of covert
attention in reading. Our model lends support to the
existence of autonomous saccades, i.e., the hypothesis
that initiations of saccades are not completely deter-
mined by lexical access processes.

1 Introduction

Investigating eye movements in reading may be looked
upon as a case study for the more general problem of
scanning of visual scenes with higher structural com-
plexity. Typical eye movements in reading form a rather
complicated trajectory — almost like a random walk (van
Kampen 1981; Gardiner 1990; Gillespie 1992). For
theoretical approaches to the control of eye movements,
this random walk can be approximated by a series
of fixations. As an illustrative comparison (Reichle
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et al. 1998), we may think of reading as a “‘slide show”
where the “slides’ (words) are fixated for about 200 to
250 ms, separated by executions of saccades (20 to
40 ms).

The experimentally observed random walk over
words is the consequence of saccades from word, to
word,. For k = n, word,, is refixated, which is typically
observed for low-frequency words. If £ > n + 1, word,,;
is skipped. Word skipping is very likely for highly fre-
quent words like articles. Considering only forward
saccades and refixations, k > n, is motivated by the hy-
pothesis that this form of eye movements may represent
a “default” model of eye movement control. Using this
conjecture, a successful class of models, the so-called E-
Z Reader 1 to 5, has been proposed recently (Reichle
et al. 1998). This model has also been extended to in-
clude initial fixation locations and refixations (Reichle
et al. 1999). In mathematical models of this class, a
number of internal states is used to represent combina-
tions of different stages of lexical access and saccade
programs. A stochastic sequence of internal states is
related to a certain sentence. The sequence is generated
by stochastic transition rules to account for the observed
statistical properties of eye movements.

In this paper, we propose a “‘minimal” model of eye
movement control in reading to explore modifications
with respect to different assumptions of the E-Z Reader
modeling framework (Reichle et al. 1998). Since all our
alternative assumptions relate to a fundamental level of
model design, the analysis is restricted to the same level
of approximations as E-Z Reader 1. As a consequence,
experimental data used here are gaze durations, defined
as the sum of first fixation duration and all potential
refixations, and probabilities for word skipping. Possible
extensions of our model are proposed in Sect. 5.

The model proposed here differs in three major as-
pects from the E-Z Reader model. First, a fundamental
assumption in mathematical models of eye movement
control is related to the coupling of two subsystems: eye
movements and shifts of visual attention. In the E-Z
Reader models, lexical processes induce shifts of covert
attention. The end of a familiarity check, ie., a
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preprocessing stage of lexical access, initiates a saccadic
motor program, while a shift of (covert) attention to the
next word is induced by full lexical access. In our model,
we assume that both the saccadic motor program and
the covert shift of attention are initiated at the end of
lexical access of the foveal word, i.e., a common
mechanism, which synchronizes both subsystems.

Second, in the E-Z Reader models, saccade initiation
is completely governed by lexical processes. There is no
saccade without successful preprocessing. In our model,
we investigate the consequences of relaxing this hy-
pothesis of a strong coupling between lexical access and
eye movements. In particular, we demonstrate that au-
tonomous saccades, i.e., saccade programs, which are
initiated without a lexical trigger signal, will lead to rich
and psychologically plausible dynamic behavior in a
minimal model.

Finally, the third difference to the E-Z Reader
framework is methodologically motivated. We use a
generalized approach for stochastic transition rules,
which is based on the concept of transition probability
rates (van Kampen 1981; Gardiner 1990). Using this
framework, we replace assumptions on the distribution
of residence times — like gamma distributions (Reichle
et al. 1998) — by an equation for transition probability
rates on the level of internal states of the model. In
particular, we show that the experimentally observed
statistical properties of eye movements in reading can be
explained by semi-Markov processes (Gillespie 1978)
with residence-time-dependent transition probability
rates.

We start with an introduction to semi-Markov pro-
cesses and its exact numerical simulation in Sect. 2. In
Sect. 3 we focus on a simple model for word skipping,
which is then extended to modeling distributions of
fixation duration (Sect. 4). In Sect. 5 we will address
some other differences between our model and the E-Z
Reader model.

2 Semi-Markov processes

In the class of models of eye movement control discussed
here, a finite number of internal states S;,S,,S3,... is
used to describe different stages of processing of words
and eye movements. Since transitions between adjoining
states are defined by stochastic transition rules, a
“random walk” over the internal states is performed
when we use such a model to process a sentence.
Different runs of the model yield different realizations of
both the internal random walk and the observed random
walk over words (i.e., the series of fixations).

2.1 Residence-time-dependent transition probability rate

An important concept for stochastic models of random
processes is the transition probability rate. To start with
a general framework for stochastic transitions, we use
the following transition rule (Gillespie 1978): if the
system is in the state S,, at time ¢, having arrived there at
time ¢ — 7(t > 0), the probability that it will step to some

other state S, in the next infinitesimal time interval
(¢,t+dr) is

Wom(t)dt . (1)

The most common assumption is that the transition
probability rate does not depend on residence time T,
i.e., Wyn(t) = Wy, = const. In this case the random
walk is a Markov process (van Kampen 1981). The
more general case (1), where the transition probability
rate depends on residence time, is referred to as a
semi-Markov process. Some techniques for the anal-
ysis of Markov processes can be exploited for the
study of semi-Markov processes. As an example,
Gillespie (1977) derived a generalized master equation
for these processes. For numerical simulations of semi-
Markov processes, an exact and efficient algorithm has
been developed (Gillespie 1978). In the following we
discuss why we need to implement residence-time-
dependent transition probabilities in our model of eye
movements in reading.

2.2 Pausing-time distribution

A fundamental concept for Monte Carlo simulation
techniques is the transition probability density function
P(t,n|m,t). The probability that the system steps next to
state S, in the time interval (¢+7,¢+t+d7), if it
arrived in the state S,, at time ¢, is given by P(t, n|m, t)dz.
The transition probability density function can be
written as a product of two other functions,

P(t,njm,t) = n(n,m)y(t|m) , (2)

where n(n, m) is the stepping probability from state S, to
state S,,, and (t|m) is the probability density function
for the pausing time 7 in the state S,,.

The stepping probability can be calculated from the
relative transition probabilities at time T,

Wom(T)
Wm(f) . (3)

n(n,m) =

The probability density function for the pausing time is
obtained from the transition probability rate (1),

Y (tlm) = Wy (1) expq — / Wo()de b (4)
0

where we used the definition W,,(t) = ), W,u(1) of the
transition probability for a transition from S, to any
other state S, (for details see Gillespie 1978).

In the case of a Markov process, where W,(1) is a
constant, the pausing time is exponentially distributed:
Y(t|lm) = wye ™. As an important property of the ex-
ponential distribution, the maximum of ¥ is at 7 = 0.
The residence times of different internal states S; (with
sub-processes Sy—S;) sum to fixation durations. There-
fore, corresponding distributions of fixation durations
are qualitatively of the exponential type. A typical ex-
perimentally observed distribution of fixation durations
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Fig. 1. A typical frequency distribution of fixation durations in
reading (after Rayner 1998)

shows, however, a sharp maximum of relative frequency
(probability) at 200 ms (Fig. 1). Therefore, the experi-
mentally observed distribution of fixation durations
cannot be explained by a Markov model in a straight-
forward way.

To avoid these restrictions of the Markov case, we use
the more general approach for the transition probability
rate (1). Compared to a constant W,,, we now discuss the
next more complicated case: a transition probability
which increases linearly with 7. As an additional
parameter, we introduce a refractory period 7o with

vanishing transition probability rate. These two
assumptions are described by

_]0 if T < 19
(1) = {wm(r —1) ift>1 ° (5)

Following the general relation (4) between transition
probability rate and pausing time distribution, (5) leads
to the following probability density function for the
pausing time,

Y (tlm)

0 if 1 <1
- wm(r—ro)exp<—%(r—ro)2) if t>19  (6)

which is a single-humped distribution and qualitatively
in agreement with the experimentally observed percent-
age of fixation durations (Fig. 1). In the following, the
refractory time 7y is written as a proportion of mean
pausing time .

9 =¢u, with 0<¢p<1. (7)

Some remarks on this assumption are necessary: Our
approach (7) permits independent variation of the
variance and mean value of the residence time. Modi-
fications to this relation could be necessary to capture
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additional statistical measures. Alternatively, a specifi-
cation of additional states of the model could lead to
comparable results. In the case of a fixed value of ¢, (7)
is in agreement with the assumptions of Reichle et al.
(1998) in the E-Z Reader models (see below).

Given a mean value u, of the pausing time, we have to
compute a corresponding value for the total transition
probability rate ¥, for state S, to all adjoining states S,.
Using the probability distribution function for the
pausing time (6), we calculate its mean value,

x \ 12
= 8
=t () ®)
from which parameter w,, can be read directly,
2 2
i = —21 7/ )

(e—w) 2(1—¢)

We now investigate how variation of ¢ influences the
relation between the mean value u, and the standard
deviation o, of the pausing time 7. Calculation of the
second moment of the distribution (6) and substracting
the square of the mean gives

4=
S 2w,

(10)

The variance does not depend on ¢ (or 7g), since the
refractory time simply shifts the distribution of 7. The
ratio of standard deviation (from Eq. 10) to mean
(Eq. 8) is independent of the transition probability
parameter w,,, i.e.,

O
My

Since in the E-Z Reader models o./u, is fixed at one-
third (Reichle et al. 1998), the corresponding value of ¢
is 0.36. Given a certain mean value for the pausing time
in state S,,, and a relation between standard deviation
and mean value, we can calculate the model parameters
wy,, and ¢ analytically using (9) and (11).

As stated before, the type of distributions (6) for the
sub-processes determines the distribution of fixation
durations. It is shown in Sect. 4 that (5) leads to realistic
predictions on the distributions of fixation durations.
In Sect. 3 we review the basic mechanisms for word

skipping.

- <4‘“>1/2 (=) ~052-(1—¢) . (1)

T

3 Modeling word skipping

The simplest model of how lexical access drives eye
movements is a strictly serial one. When a currently
fixated word is lexically processed, a saccade program to
the next word is initiated. Its termination signals the
execution of the saccade. This assumption leads to
strong constraints on the available time for lexical
access. The reason for a rather limited time for lexical
access is that in such a model the lexical access time and
the time required for programming a saccade to the next
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word sum to the fixation duration of a word. Therefore,
the lexical access time can be calculated from the
difference of fixation duration and saccade program
time. From the viewpoint of adaptivity, parallel pro-
cessing of lexical access and saccade program to the next
word would be much more efficient. We will show in
Sect. 5 that — given the experimentally observed fixation
durations — the time available for lexical access increases
considerably compared to the serial model. The as-
sumption of parallel processes has the additional
consequence that it predicts skipping of highly frequent
words (Morrison 1984; Rayner and Pollatsek 1989).

3.1 A two-state model

Information processing is most efficient in the central 2°
of the visual field, the foveal region. Acuity decreases in
the parafoveal region, which extends out to 5°, and is
even poorer in the peripheral region beyond the
parafovea (Rayner 1998). Nevertheless, it will turn out
to be a considerable advantage if parafoveal information
is used during reading. For processing the word to the
right of a currently fixated word, attention has to shift to
the parafovea. In this case, the programming of saccade
and lexical access are active simultaneously. Therefore,
such models show parallel processing (Morrison 1984).
Regardless of the number of internal states, the basic
mechanisms that are performed by these models are
shifts of attention and eye movements.

A minimal model for parallel processing of lexical
access and saccade programming consists of two internal
states (Fig. 2). In state 1, word, is fixated while lexical
processing [, is active. It is well known that lexical access
time depends on word frequency,

Ly =1p — I, log(F,) , (12)

where F;, is the frequency of word,, and [, and [,, are
constant parameters. When lexical access is finished, the
system switches to state 2. This transition implies a shift
of attention to word, 1.

The saccade program to the next word,,; starts in
state 2. The saccade program is denoted by s,; n is re-
placed by n+ 1 (update) when the transition is per-
formed. Simultaneously, lexical access /, starts, which is

@7

n—n+1 skip word,,
In, In sn
" —=n+1
fixate Sn I, " nt
word,,

Fig. 2. The two-state model for word skipping. In state 1 (lef?) lexical
access of word, is active while it is fixated. When lexical access is
complete, the system steps to state 2 (right), i.e., a shift of attention
occurs. The variable n is updated (n—n + 1). In state 2, lexical access
of word, starts by use of parafoveal information. Simultaneously, a
saccade program to the same word is initiated. Depending on the
frequency F, of word,, it can be skipped (/,, terminates first) or fixated
(s, terminates first)

possible due to the use of parafoveal information (by the
shift of attention). Since the two sub-processes /, and s,
of state 2 are in competition with each other, two tran-
sitions are possible. The saccade program is assumed to
be independent of lexical properties of the text, with a
mean value of the programming time of about 150 ms. If
the saccade program is faster than lexical access, which
is most likely for low-frequency words, the system
switches to state 1. This transition signals the execution
of a saccade (typical duration 15 to 40 ms). As a result,
the fixation period of word, begins. In state 1, the lexical
access of word,, will be completed.

Alternatively, if lexical access is faster than the sac-
cade program, a transition from state 2 to state 2 is
performed. In this case, the saccade program to word,
is canceled: there is no reason to fixate word,, since it is
already lexically processed. Instead a saccade program
sp+1 and lexical access 7,1 of the next word are initiated
(n is updated during the transition). As a consequence,
word, is skipped. According to the model, this event will
occur with higher probability for high-frequency words.

3.2 Simulations of the two-state model

For numerical simulations of the two-state model and its
modifications, we use a corpus of sentences as previously
discussed in Reichle et al. (1998). In an eye-tracking
experiment participants read 48 sentences, each consist-
ing of 8 to 14 words (Schilling et al. 1998). For model
evaluation we compared numerical simulations of mean
fixation duration and probability for word skipping with
corresponding values observed in the experimental
study.

Word frequency is the lexical parameter used for
model simulations, as in (12). All words of the corpus
were divided into five different frequency classes. Mean
gaze duration and mean probability for skipping for
these five classes are the experimental basis used here.
Results from the model simulation are given in Fig. 3.
Details of the simulation algorithm are discussed in
Appendix A. For the execution of saccades we used
gamma-distributed random numbers. The mean value
was fixed at 25 ms and the standard deviation was fixed
at one-third of the mean, as suggested by Reichle et al.
(1998). The parameter estimation method is described in
Appendix B, where mean fixation durations and skip-
ping probabilities are used for the optimization proce-
dure (Appendix B.1). Best-fit values for model
parameters are [, = 271, [,, = 12.0, s, = 170, ¢; = 0.70,
and ¢, = 0.47. The obtained minimal value for the de-
viation measure, (B3), is Ay = 0.174. Summarizing we
can say that fixation durations as well as skipping
probabilities are in good agreement with experimental
data.

The most important restrictions for modeling differ-
ent distributions of fixation durations arise from as-
sumptions on the form of the transition probability rate
(1). There are two important motivations for the linear
t-dependence chosen in our model. First, it is the next
more complicated case compared to the Markov
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Fig. 3a,b. Fixation durations and probability of word skipping for
model simulation (dashed line) and experimental data (solid line, from
Reichle et al. 1998): a fixation durations show a linear dependence on
the logarithm of word frequency — frequency classes represent
effectively a logarithmic scale; b probability for word skipping
increases with word frequency. In both panels, model simulations
are in good agreement with experimental data

assumption (W, (t) = const.). Second, the resulting
distribution (6) is qualitatively in agreement with typical
experimentally observed distributions (Fig. 1); for (6),
the probability decreases faster for increasing t than in
the case of gamma distributions.

While mean fixation durations and probabilites of
word skipping can be explained with the two-state
model, it fails to predict the correct distributions of
fixation durations (see Fig. 6). In Sect. 4 we show how
this shortcoming can be solved by increasing model
complexity, i.e., by adding a third state to the model.

4 Modeling fixation durations
4.1 A three-state model

The next step in making the basic two-state model
(Fig. 2) more flexible for reproducing distributions of
fixation durations is to distinguish lexical access pro-
cesses in states 1 and 2. Since acuity is decreased in the
parafoveal region, we assume that lexical processing in
state 2 is in a preliminary stage with different parame-
ters: after the shift of attention, parafoveal information
is required in state 2, while foveal information can be
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Fig. 4. The three-state model for the control of eye movements in
reading. As a generalization of the two-state model (Fig. 2), lexical
access parameters are different in states 1 and 2. To make the resulting
model consistent with respect to lexical access parameters after a word
has been skipped, an additional state 3 has to be assumed. The
transition from state 1 to state 3 plays an important role for the
coupling between lexical processes and saccade programs (see text)

used in state 1. If lexical preprocessing in state 2,
Iy = I; — I log(F,), terminates, a transition to an addi-
tional state 3 occurs (Fig. 4). In this state, the saccade
program to word, is canceled, i.e., word,, is skipped, and
a new saccade program to word,, is initiated; at the
same time, lexical access of word, is completed. We
assume that lexical access time is independent of the
state where it started. Therefore, lexical access time in
states 1 and 3 is reduced by the amount of time lexical
preprocessing (in state 2) is performed. As a conse-
quence, it is most likely that lexical access [, in state 3 is
faster than s,.1, since /, is reduced by /7 (on the basis of
mean values). Therefore, we do not add an additional
transition for the case in which s, terminates first.

4.2 Autonomous saccade programs

As an additional property of the three-state model, we
consider a possible transition from state 1 to state 3: the
“autonomous’ initiation of a saccade program to
word, ;. The hypothesis behind the introduction of this
transition is that the visual control system has some
autonomy in programming a saccade. This assumption
has important consequences for the coupling between
shifts of attention and eye movement control. In extant
theoretical models, eye movements are completely
controlled by lexical processes, i.e., the initiation of a
saccade program is determined by the familiarity check
(Reichle et al. 1998). We now address the important
question of whether we can relax the assumption of this
strong form of coupling of the two sub-processes in
order to explain the experimental data.
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Table 1. Results of parameter estimation for two-state (2) and three-state (34/3B) models. The star (*) indicates that model parameters
were estimated from mean fixation durations and skipping probabilities only (Appendix B.1)

Model Fitness Iy I I r,

¢l Sn ¢s o ¢a

2% 0.174 271 12.0 - -
2 0.491 287 14.0 -
3A 0.348 255 9.5 188 9.9
3B 0.312 280 14.7 187 12.6

0.70 170 0.47 - -
0.47 162 0.44 - -
0.47 113 0.69 - -
0.28 102 0.79 233 0.47

275¢

250¢

225¢

Fixaton duration [ms]

200

1 2 3 4 5
Frequency class

Probability of skipping ©

1 2 3 4 5
Frequency class

Fig. 5a,b. Fixation durations a and probability of word skipping b for
numerical simulations (dashed line) of the three-state model (version
B) and experimental data (solid line, from Reichle et al. 1998). Results
are comparable to those of the two-state model (see Fig. 3)

This investigation is carried out by a comparison of
the performance of different versions of the three-state
model. In model 3A, we exclude transitions from state 1
to state 3, which is equivalent to @ — oco. In model 3B,
we assume that the mean residence time to start a sac-
cade program s,.; in state 1 is finite and constant,
a = const. > 0. In this case, the transition from state 1 to
state 3 is comparable to other transitions in the model.
Like the mean time s, to program a saccade to word,,
the parameter a is independent of word frequency F;,.

We now discuss the results obtained from model
simulations. Using the same corpus of sentences as for
the two-state model, the performance of the models is
compared with respect to mean fixation durations and
distributions as well as to the probability of skipping, for
five different frequency classes (Eq. B5). The results are
summarized in Table 1.

A first glance at Table 1 shows that the results for
both versions (A and B) of the three-state model are
comparable. This robustness of estimates for the pa-
rameters is a hint for the structural stability of the
models: small modification do not lead to qualitative
changes. This property emphasizes the psychological
plausibility of the models. For a more detailed com-
parison between the two- and three-state models, the
results for model 3B are presented in Fig. 5 (mean fix-
ation duration and probability for word skipping) and 6
(distribution of fixation durations for 5 different classes
of word frequency). Generally, model simulations are in
good agreement with experimental data.

All models discussed here represent the same class
of models, but with differing model complexity, e.g.,
number of internal states and parameters. Generally,
model performance, i.e., fitness, increases with model
complexity. This a non-trivial result, because the cou-
pling between lexical access and saccade programs
decreases from model 3A to model 3B. While in model
3A only lexical access can trigger the initiation of a
saccade program, in model 3B the saccade programs
can start spontaneously. Additionally, we investigated
a saccadic sub-system with a periodic forcing, i.e., a
periodic variation of the probability for the initiation
of saccade programs, which turned out not to desta-
bilize model performance. This numerical control study
provides further evidence on the robustness of our
results.

A further remark concerns the two-state model: while
the two-state model can explain the pattern of mean
fixation duration and probability for word skipping, it
fails to predict the correct distribution of fixation du-
rations. The corresponding best fitness value obtained in
our simulations was Az = 0.491 (see Eq. BS), which is a
clear indication that the two-state model is too limited to
explain the distribution of fixation durations.

The most important consequence of the introduction
of an autonomous saccade program is related to pre-
dictions about preview benefit. This is a qualitatively
new property of model 3B that cannot be achieved by
model 3A. We discuss these results in Sect. 4.3.

4.3 Analysis of preview benefit

It is a well-known experimental observation that lexical
processing time of a word is shorter when there was a
preview of the word in the parafovea (Rayner 1998).
Following Reichle et al. (1998), a key problem in
minimal models of eye movement control in reading is
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to explain that preview benefit is modulated by foveal
difficulty. Therefore, an important success of the E-Z
Reader models is to provide a mechanism for this effect
by introducing two stages of lexical processing: a
familiarity check and lexical completion.

In contrast to Reichle et al. (1998), our three-state
model 3B shows that preview benefit depends on its in-
herent dynamic behavior with a single lexical processing
stage (Fig. 4). If lexical access of word,, starts in state 1,
then there are two possible transitions (to state 2 and
state 3, respectively), whose stepping probabilities are
modulated by word frequency. In the case of a foveal
high-frequency word, a transition to state 2 will most
likely occur. Preview benefit is, therefore — to a first
approximation — given by the time required for pro-
gramming the saccade to word,, . Alternatively, a low-
frequency word,, in the fovea induces a high probability
for a transition to state 3 via an autonomously triggered
saccade. If this happens, a saccade program to word,
is initiated before lexical access of word, is completed.
The consequence for the amount of preview benefit is
that when the system finally steps to state 2 (there is no
alternative), preview benefit is reduced by the amount of
time that the system has spent in state 3. Thus, our
model provides an explanation of how preview benefit

state model are in good agreement with exper-
imental data (after Reichle et al. 1998)

can be modulated by foveal processing difficulty, in
terms of its dynamics.

On the assumption that preview benefit is minimal if
the previous word is skipped, we confirmed these con-
siderations about the underlying qualitative dynamics
with numerical simulations. Thus, the difference between
fixation durations on words following a skipped word
and those following a fixated word should indicate a
preview benefit increasing with word frequency. The
difference between the solid lines in Fig. 7 reveals that
this was indeed the case for model 3B. The amount of
preview benefit obtained is in the same order of mag-
nitude as in the study by Reichle et al. (1998). The upper
limit for preview benefit in our model is the mean time
required to program a saccade, s,, since preview benefit
is given by the residence time in state 2 (Fig. 2). The
dependence of preview benefit on word frequency was
not observed for model 3A (i.e., the difference between
the dashed lines was roughly constant). The primary
source of the increase of preview benefit with word fre-
quency in model 3B is due to the introduction of au-
tonomous saccades in this model leading to an increase
of the fixation duration for low-frequency words if the
previous word was fixated (two bottom lines in Fig. 7).
Since this effect is caused by transitions from state 1 to
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Fig. 7. Preview benefit in models 3A (dashed lines) and 3B (solid lines),
averaged over 500 realizations. The bottom two lines represent fixation
durations as a function of word frequency class for all cases, in which
the previous word was fixated. Corresponding mean fixation
durations are shorter than in those cases where the previous word
was skipped (top two lines), i.e., there was minimal preview. It is an
important consequence of the introduction of autonomous saccades
that preview benefit is modulated by word frequency (see text)

state 3 (Fig. 4), the mean residence time in state 2 is
reduced. As a consequence, this reduction of the preview
benefit is highest for foveal low-frequency words. As
expected, there is no or very little frequency-dependent
modulation of fixation durations due to autonomous
saccades if the previous word is skipped (top two lines in
Fig. 7).

Finally we note that there are phenomena not covered
by the E-Z Reader model as well as our present model,
such as the influence of the difficulty of the last word
fixated on fixation duration on the word currently fix-
ated (Kennedy 2000), or extraction of information to the
left of the fixated word (Binder et al. 1999; see also
Kennedy et al. 2000 for a recent review). A discussion of
these issues is beyond the scope of the current study; our
aim here is to demonstrate that complex dynamic be-
havior emerging from simple mathematical models can
explain experimental findings in a psychologically
plausible way.

5 Discussion

Theoretical models of eye movement control success-
fully account for several statistical aspect of eye
movement pattern during reading (Reichle et al. 1998).
A key model assumption relates to the coupling of eye-
movement preparation and shift of visual attention. In
the E-Z Reader framework (Reichle et al. 1998),
detailed mechanisms of lexical processing are proposed
(Liversedge and Findlay 2000). This class of models is
based on the assumption that saccade programming is
strictly governed by lexical processes. Following Deubel
et al. (2000), however, “the alternative notion that low-

level oculomotor processes might be playing the dom-
inant role in eye movement control during reading
remains a serious possibility”’. Based on the analysis of
initial landing positions, Reilly and O’Regan (1998)
compared different word-targeting strategies as an
example of this alternative approach to eye movement
control.

In this study we restricted our analysis to minimal
models investigating a new form of coupling between
eye movements and visual attention, where saccade
programs can be initiated both by lexical processes and
autonomously. Using a three-state model, we showed
that relaxing the assumption that lexical processing
completely governs the initiation of saccade programs
leads to an increase in model performance. Therefore,
it seems promising to study further variants or exten-
sions of our three-state model with the aim of analyz-
ing the relation between shifts of attention and eye
movements. Our preliminary results, however, suggest
that models without a strong coupling between lexical
processes and saccade programs may still be a viable
alternative to the successful E-Z Reader models
(Reichle et al. 1998).

As a consequence of the introduction of an autono-
mous saccade program, even the three-state model
shows complex dynamic behavior, which leads to psy-
chologically plausible results on preview benefit. An
important property of this model is that it provides an
explanation of how preview benefit is modulated by
foveal processing difficulty in terms of its dynamics.

An interesting parameter in models of eye movement
control in reading is lexical processing time. Fixation
duration as a function of word frequency follows ap-
proximately the relation z, = 303 — 8.26 log(F,,) (Fig. 3a,
solid line). In a strictly serial model, explained at the
beginning of Sect. 3, lexical and saccade processing time
simply sum to #,. Assuming a mean saccade program
duration of s = 100.0 ms yields a lexical processing time
B =t,—s=203—8.26log(F,). Based on the same ex-
perimental data, all models discussed here provide a
significant increase in (available) processing time. This
increase is due to parallel processing of saccades and
lexical access (Morrison 1984). Furthermore, our model
suggests that gaze duration is a key measure of lexical
processing time, since the slope parameters (—9.5 to
—14.7) estimated in the model are in good agreement
with the empirical slope for the regression of gaze
duration on word frequency (—8.26).

Using the theoretical framework of semi-Markov
processes, we investigated the role of stochastic transi-
tion rules for models of eye movement control. In the E-
Z Reader framework (Reichle et al. 1998), pausing-time
distributions are assumed to be gamma-distributed with
a fixed relation between standard deviation and mean
value. As an alternative, we analyzed residence-time-
dependent transition probability rates. Besides the fact
that transition probability rate is a more fundamental
concept for stochastic processes (Gillespie 1978), an
additional advantage of this approach is that it can be
implemented by an exact algorithm for numerical
simulations.



The implementation of stochastic models may result
in considerable deviations from the exact results (Feistel
1977). To avoid these problems for the numerical sim-
ulations of our mathematical models, we used an exact
algorithm (Gillespie 1978) which is a generalization of
the minimal process method (Gillespie 1976). This
method was proposed originally for numerical simula-
tions of chemical reactions, but has been applied to a
broad class of systems, e.g., from molecular biology
(Elowitz and Leibler 2000), physiology (Fricke and
Schnakenberg 1991), or population dynamics (Engbert
and Drepper 1994). Therefore, we believe that our ap-
proach may be applicable to a variety of problems in the
field of eye movement control.

As a further remark, the framework for stochastic
simulation introduced here can also be used for numeri-
cal simulations of a broader class of models (Reichle
et al. 1998). We restricted our analysis to minimal
models in order to investigate the coupling of eye
movements and shifts of visual attention in detail. For
this reason, the three-state model is on the same level of
abstraction as E-Z Reader 1. Possible extensions of this
three-state model to account for refixations could be
derived in close analogy to the development of E-Z
Reader 3 to 5 by Reichle et al. (1998). In particular, a
saccadic refixation program could be introduced as an
additional subprocess in state 1 (Fig. 4). We note,
however, that a more psychologically plausible expla-
nation for the occurrence of refixations should provide a
common mechanism for saccade, refixations, and
regressions.

As a final remark, our results suggest that assump-
tions about stochastic properties of mathematical mod-
els may strongly influence the performance of the models
as well as their complexity (e.g., the number of internal
states necessary). A comparison between E-Z Reader 1
(eight internal states) with our three-state model suggests
that — if these assumptions are too restrictive — model
complexity (e.g., number of internal states) could be
overestimated.
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Appendix A: Numerical simulation — Gillespie algorithm

Efficient numerical simulation techniques for Markov
processes (Gillespie 1976; Feistel 1977) have been
extended to stochastic simulation of processes with
residence-time-dependent transition probability. Details
of the derivation of the algorithm can be found in
Gillespie (1978).

The pausing-time distribution can be calculated from
the transition probability rate (4). For numerical simu-
lations, we have to create pseudo-random numbers ac-
cording to this distribution. The general rule (Gillespie
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1978) for the transformation of computer-generated
random numbers r to 7 is given by

; 1
[ ma@iae 1o () |
r
0

where r is a random number from the unit-interval
uniform distribution (Press et al. 1988). In our case (5),
this relation is invertible, so that 7(r) can be calculated
analytically. Realizations of the pausing time t are
obtained from

2 <1)
—log(-]) ,
Wi r

where 7 is the refractory time. Details of the simulation
algorithm are discussed in Gillespie (1978).

As a typical case for the models studied in this paper,
there are transitions between states with two competing
processes. As an example, consider state 2 in the two-
state model (Fig. 2): lexical access [, of word, and the
saccade program s, to the same word are active at the
same time. If the saccade program terminates before
lexical access is complete, then the transition from state
2 to state 1 is performed and fixation of word, starts.
When the system arrives in state 1, lexical access of
word, has already been active for a time 7, which is, in
this case, the pausing time in the previous state 2.
Therefore, the transition probability in state 1 is
W(t 4+ 7), where 7 is the time period for which lexical
access has already been active. We now extend (A2) to
the case of two competing sub-processes with one and
two adjoining states.

(A1)

(r) =1+ (A2)

A.l. Transitions with one adjoining state

Let us define the difference t; = 79 — 7 of refractory time
7o (5) and 7 of the process. The pausing time at state S
can be transformed from unit-interval uniform random
numbers as follows,

2 1
11>20: =1+ —10g<—>, (A3)
Wi r
, 2 1
71 <0: t=71 44/t +—log(-) . (A4)
w1 r

A.2. Transitions with two adjoining states

In the case of two possible transitions, like state 2 of the
two-state model (Fig. 2), the stochastic simulation of
the pausing time is more complicated. We consider two
competing sub-processes with t; = e (k=1,2),
0

where rék) are refractory times and %) are the time
periods for which the processes have already been active.
For simplicity, let us assume 7; < 7. The pausing time
of such states can be computed as follows:



86

Case 1.7, <0, 7, <0
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Case 2. 71 <0, 1,>0
5 2 1
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Case 3.71,70 >0, 11 < 1
2 1
(a)1<1 =1+ —10g<—>
w1 r
(b) 1> 1,
W0t
T=1+
w1 + wp
5t \? o1)? 2 1
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w1+ wp wr+wy w4+ w r
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where 0t = 15 — 13.

Appendix B: Parameter estimation — genetic algorithm
approach

For the estimation of model parameters we use a genetic
algorithm (GA) approach (Holland 1992; Mitchell
1996). For each sentence, 500 stochastic realizations of
the model were run with a new set of pseudo-random
numbers. For the genetic algorithm we used a popula-
tion of 100 combinations of parameter values which
were iterated over 1000 generations. Several runs of the
GA were used to test the reliability of the estimates for
the model parameters. The parameter values given in
Table 1 represent mean values over nine runs of the GA.
A separate simulation was performed to produce the
data shown in Fig. 3, 5, and 6. A single run for the
parameter estimation took approximately 48 hours CPU
time on a SUN Ultra 10 computer. The fitness function
used for the GA optimization method is discussed below.

B.1 Mean fixation duration and skipping probability

The 536 words of the corpus (48 sentences) are divided
into five different frequency classes, as suggested in

Reichle et al. (1998). The frequencies in the different
classes are 0-10 (class 1), 11-100 (class 2), 101-1000
(class 3), 1001-10000 (class 4), and 10001—co (class 5).

With the two-state model we aim to explain the ex-
perimental results of mean fixation duration and prob-
ability of word skipping. The mean fixation duration for
words of class k obtained from model simulations is
denoted by T(k); or(k) is the corresponding standard
deviation. This is compared with the experimentally
observed value 7°(k). The deviation of simulated mean
fixation durations from observed mean fixation dura-
tions is defined as

HE)

k=1

(BI)

i.e., the sum of squared differences over five different
frequency classes.

As the second measure of model performance we use
the probability of word skipping. p(k) is the probability
of word skipping in class k; the experimental value is
denoted by p°(k). Analogously to (Bl), the deviation
between simulated and observed probabilities of word
skipping can be defined as

where a,(k) = \/p(k)(1 — p(k)).

Combining these two terms gives a possible fitness
function that is used for the genetic algorithm parameter
estimation method,

(B2)

Ay = (Ar +A)? . (B3)

B.2 Distribution of fixation durations

For the three-state model, we include a measure for the
deviation of simulated data from the observed distribu-
tion of fixation durations,

12

Ap = (h°(k) = h(k))* ,

k=1

(B4)

where h(k), (h°(k)) are the relative frequencies of
simulated (observed) fixation durations in a distribution
over 12 bins (from Reichle et al. 1998). Therefore, the
fitness function is modified to

Ay = (Ar+ A, +Ap)'/* . (B5)
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