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How can a texting pedestrian walk right into a pole, even though 
it is clearly visible1? At any given moment, our attention and eyes 
are focused on some aspects of the scene in front of us, while other 
portions of the visible world go relatively unattended. We deploy 
this selective visual attention because we are unable to fully process 
everything in the scene at the same time. We have the impression of 
seeing everything in front of our eyes, but over most of the visual 
field, we are probably seeing something like visual textures, rather 
than objects2,3. Identifying specific objects and apprehending their 
relationships to each other typically requires attention, as our unfor-
tunate texting pedestrian can attest.

Figure 1 illustrates this point. It is obvious that this image is filled 
with the letters M and W in various combinations of red, blue, and 
yellow, but it takes attentional scrutiny to determine whether or not 
there is a red and yellow M.

The need to attend to objects in order to recognize them raises 
a problem. At any given moment, the visual field contains a very 
large, possibly uncountable number of objects. We can count the 
M and W characters of Fig. 1, but imagine looking at your reflec-
tion in the mirror. Are you an object? What about your eyes or 
nose or that small spot on your chin? If object recognition requires 
attention, and if the number of objects is uncountable, how do 
we manage to get our attention to a target object in a reasonable 
amount of time? Attention can process items at a rate of, perhaps, 
20–50 items per second. If you were looking for a street sign in 
an urban setting containing a mere 1,000 possible objects (every 
window, tyre, door handle, piece of trash, and so on), it would take 
20–50 seconds just to find that sign. It is introspectively obvious 
that you routinely find what you are looking for in the real world in 
a fraction of that time. To be sure, there are searches of the needle-
in-a-haystack, Where’s Waldo? variety that take significant time, 
but routine searches for the salt shaker, the light switch, your pen, 
and so forth, obviously proceed much more quickly. Search is not 
overwhelmed by the welter of objects in the world because search 
is guided to a (often very small) subset of all possible objects by 
several sources of information. The purpose of this article is to 
briefly review the growing body of knowledge about the nature of 
that guidance.

We will discuss five forms of guidance:

Five factors that guide attention in visual search
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How do we find what we are looking for? Even when the desired target is in the current field of view, we need to search because 
fundamental limits on visual processing make it impossible to recognize everything at once. Searching involves directing atten-
tion to objects that might be the target. This deployment of attention is not random. It is guided to the most promising items and 
locations by five factors discussed here: bottom-up salience, top-down feature guidance, scene structure and meaning, the pre-
vious history of search over timescales ranging from milliseconds to years, and the relative value of the targets and distractors. 
Modern theories of visual search need to incorporate all five factors and specify how these factors combine to shape search 
behaviour. An understanding of the rules of guidance can be used to improve the accuracy and efficiency of socially important 
search tasks, from security screening to medical image perception.

•	 Bottom-up, stimulus-driven guidance in which the visual prop-
erties of some aspects of the scene attract more attention than 
others.

•	 Top-down, user-driven guidance in which attention is directed 
to objects with known features of desired targets.

•	 Scene guidance in which attributes of the scene guide attention 
to areas likely to contain targets.

•	 Guidance based on the perceived value of some items or features.
•	 Guidance based on the history of prior search.

Measuring guidance
We can operationalize the degree of guidance in a search for a target 
by asking what fraction of all items can be eliminated from consid-
eration. One of the more straightforward methods to do this is to 
present observers with visual search displays like those in Fig. 2 and 
measure the reaction time (RT) required for them to report whether 
or not there is a target (here a T) as a function of the number of 
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Figure 1 | A surprisingly difficult search task. On first glimpse, you know 
something about the distribution of colours and shapes but not how those 
colours and shapes are bound to each other. Find instances of the letter M 
that are red and yellow.
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items (set size). The slope of the RT × set size function is a measure 
of the efficiency of search. For a search for a T among Ls (Fig. 2a), 
the slope would be in the vicinity of 20–50 ms per item4. We believe 
that this reflects serial deployment of attention from item to item5, 
although this need not be the case6.

In Fig. 2b, the target is a red T. This search would be faster and 
more efficient7 because attention can be guided to the red items. If 
half the items are red (and if guidance is perfect), the slope will be 
reduced by about half, suggesting that, at least in this straightfor-
ward case, slopes index the amount of guidance.

The relationship of slopes to guidance is not entirely simple, even 
for arrays of items like those in Fig. 2 (ref. 8), but see ref. 9. Matters 
become far more complex with real-world scenes where the visual 
set size is not easily defined10,11. However, if the slope is cut in half 
when half the items acquire some property, like the colour red in 
Fig.  2b, it is reasonable to assert that search has been guided by 
that property9.

The problem of distractor rejection. As shown in Fig. 2, a stimulus 
attribute can make search slopes shallower by limiting the number 
of items in a display that need to be examined. However, guidance 
of attention is not the only factor that can modulate search slopes. 

If observers are attending to each item in the display (in series or in 
parallel), the slope of the RT × set size function can also be altered 
by changing how long it takes to reject each distractor. Thus, if we 
markedly reduced the contrast of Fig. 2a, the RT ×  set size func-
tion would become steeper, not because of a change in guidance but 
because it would now take longer to decide if any given item was a 
T or an L.

Bottom-up guidance by stimulus salience
Attention is attracted to items that differ from their surroundings, 
if those differences are large enough and if those differences occur 
in one of a limited set of attributes that guide attention. The basic 
principles are illustrated in Fig. 3.

Three items pop out of this display. The purple item on the left 
differs from its neighbours in colour. It is identical to the purple 
item just inside the upper right corner of the image. That second, 
purple item on the right is not particularly salient even though it 
is the only other item in that shade of purple; its neighbours are 
close enough in colour that the differences in colour do not attract 
attention. The bluish item to its immediate left is salient by virtue of 
an orientation difference. The square item a bit further to the left is 
salient because of the presence of a ‘closure’ feature12 or the absence 
of a collection of line terminations13. We call properties like colour, 
orientation, or closure basic (or guiding) features, because they can 
guide the deployment of attention. Other properties may be striking 
when one is directly attending to an item, and may be important for 
object recognition, but they do not guide attention. For example, 
the one plus symbol in the display is not salient, even though it pos-
sesses the only X-intersection in the display, because intersection 
type is not a basic feature14. The ‘pop-out’ we see in Fig.  3  is not 
just subjective phenomenology. Pop-out refers to extremely effec-
tive guidance, and is diagnosed by a near-zero slope of the RT × set 
size function; although there may be systematic variability even in 
these ‘flat’ slopes15.

There are two fundamental rules of bottom-up salience16. Salience 
of a target increases with difference from the distractors (target–dis-
tractor heterogeneity) and with the homogeneity of the distractors 
(distractor–distractor homogeneity) along basic feature dimen-
sions. Bottom-up salience is the most extensively modelled aspect of 
visual guidance (reviewed in ref. 17). The seminal modern work on 
bottom-up salience is Koch and Ullman’s18 description of a winner-
take-all network for deploying attention. Subsequent decades have 
seen the development of several influential bottom-up models, for 
examples, see refs 19,20–22. However, bottom-up salience is just one of 
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Figure 2 | The basic visual search paradigm. a–c, A target (here the letter T) is presented amidst a variable number of distractors (a,b). Search ‘efficiency’ 
can be indexed by the slope of the function relating reaction time (RT) to the visual set size (N) (c). If the target in panel b is a red T, the slope for b (red 
line) will be half of that for panel a (black line) because attention can be limited to just half of the items in b. 

Figure 3 | Which items pop out of this display, and why?
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the factors guiding attention. By itself, it does only modestly well 
in predicting the deployment of attention (usually indexed by eye 
fixations). Models do quite well at predicting search for salience, but 
not as well at predicting search for other sorts of targets17. This is 
quite reasonable. If you are looking for your cat in the bedroom, 
it would be counterproductive to have your attention visit all the 
shiny, colourful objects first. Thus, a bottom-up saliency model will 
not do well if the observer has a clear top-down goal23. One might 
think that bottom-up salience would dominate if observers ‘free-
viewed’ a scene in the absence of such a goal, but bottom-up models 
can be poor at predicting fixations even when observers free view 
scenes without specific instructions24. It seems that observers gener-
ate their own, idiosyncratic tasks, allowing other guiding forces to 
come into play. It is worth noting that salience models work better 
if they are not based purely on local features but acknowledge the 
structure of objects in the field of view25. For instance, while the 
most salient spot in an image might be the edge between the cat’s 
tail and the white sheet on the bed, fixations are more likely to be 
directed to middle of the cat26,27.

Top-down feature guidance
Returning to Fig. 1, if you search for Ws with yellow elements, you 
can guide your attention to yellow items and subsequently deter-
mine if they are Ws or Ms7. This is feature guidance, sometimes 
referred to as feature-based attention28. Importantly, it is possible 
to guide attention to more than one feature at a time. Thus, search-
ing for a big, red, vertical item can benefit from our knowledge of 
its colour, size, and orientation29. Following the target–distractor 
heterogeneity rule, search efficiency is dependent on the number 
of features shared by targets and distractors29, and observers appear 
to be able to guide attention to multiple target features simultane-
ously30. This finding raises the attractive possibility that searching 
for an arbitrary object among other arbitrary objects would be quite 
efficient because objects would be represented sparsely in a high-
dimensional space. Such sparse coding has been invoked to explain 
object recognition31,32. However, searching for arbitrary objects 
turns out not to be particularly efficient11,33. By itself, guidance to 
multiple features does not appear to be an adequate account of how 
we search for objects in the real world (see ‘Guidance by scene prop-
erties’ section).

What are the guiding attributes?
Feature guidance bears some metaphorical similarity to your favour-
ite computer search engine. You enter some terms into the search 
box and an ordered list of places to attend is returned. A major 
difference between internet search engines and the human visual 
search engine is that human search uses only a very small vocabu-
lary of search terms (that is, features). The idea that there might be a 
limited set of features that could be appreciated ‘preattentively’34 was 
at the heart of Treisman’s feature-integration theory35. She proposed 
that targets defined by unique features would pop out of displays. 
Subsequently, others modified the role of features to propose that 
they could guide the deployment of attention7,36.

There are probably only two dozen attributes that can guide 
attention. The visual system can detect and identify a vast number 
of stimuli, but it cannot use arbitrary properties to guide attention 
in the way that Google or Bing can use arbitrary search terms. A list 
of guiding attributes is found in Box 1. This article does not list all of 
the citations that support each entry. Many of these can be found in 
older versions of the list37,38. Recent changes to the list are marked in 
italic in Box 1 and citations are given for those.

Attributes like colour are deemed to be ‘undoubted’ because 
multiple experiments from multiple labs attest to their ability to 
guide attention. ‘Probable’ feature dimensions may be merely prob-
able because we are not sure how to define the feature. Shape is the 
most notable entry here. It seems quite clear that something about 

Changes to previous versions of the list37,38 are marked in italics.

Undoubted guiding attributes
•	 Colour
•	 Motion
•	 Orientation
•	 Size (including length, spatial frequency, and apparent size120)

Probable guiding attributes
•	 Luminance onset (flicker) but see ref. 121

•	 Luminance polarity
•	 Vernier offset
•	 Stereoscopic depth and tilt
•	 Pictorial depth cues but see ref. 62

•	 Shape
•	 Line termination
•	 Closure
•	 Curvature
•	 Topological status

Possible guiding attributes
•	 Lighting direction (shading)
•	 Expansion/looming
•	 Number
•	 Glossiness (lustre)
•	 Aspect ratio
•	 Eye of origin/binocular rivalry

Doubtful cases
•	 Novelty
•	 Letter identity alphanumeric category
•	 Familiarity — over-learned sets, in general111

Probably not guiding attributes
•	 Intersection
•	 Optic flow
•	 Colour change
•	 3D volumes (for example, geons)
•	 Luminosity
•	 Material type
•	 Scene category
•	 Duration
•	 Stare-in-crowd122,123

•	 Biological motion
•	 Your name
•	 Threat
•	 Semantic category (animal, artefact, and so on)
•	 Blur124

•	 Visual rhythm125

•	 Animacy/chasing44

•	 Threat45

Faces are a complicated issue
•	 Faces among other objects
•	 Familiar faces
•	 Emotional faces
•	 Schematic faces

Factors that modulate search
•	 Cast shadows
•	 Amodal completion
•	 Apparent depth

Box 1 | The guiding attributes for feature search.
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shape guides attention39. It is less clear exactly what that might be, 
although the success of deep learning algorithms in enabling com-
puters to classify objects may open up new vistas in the understand-
ing of human search for shape40.

The attributes described as possible await more research. Often 
these attributes only have a single paper supporting their entry on 
the list, as in the case of numerosity: can you direct attention to the 
pile with more elements in it, once you eliminate size, density, and 
other confounding visual factors? Perhaps41, but it would be good to 
have converging evidence. Search for the magnitude of a digit (for 
example, ‘find the highest number’) is not guided by the semantic 
meaning of the digits but by their visual properties42.

The list of attributes that do not guide attention is, of course, 
potentially infinite. Box 1 lists a few plausible candidates that have 
been tested and found wanting. For example, there has been consid-
erable interest recently in what could be called evolutionarily moti-
vated candidates for guidance. What would enhance our survival 
if we could find it efficiently? Looking at a set of moving dots on 
a computer screen, we can perceive that one is chasing another43. 
However, this aspect of animacy does not appear to be a guiding 
attribute44. Nor does threat (defined by association with electric 
shock) seem to guide search45.

Some caution is needed here because a failure to guide attention 
is a negative finding and it is always possible that, were the experi-
ment done correctly, the attribute might guide after all. Thus, early 
research46 found that binocular rivalry and eye-of-origin informa-
tion did not guide attention, but more recent work47,48 suggests that 
it may be possible to guide attention to interocular conflict, and our 
own newer data49 indicates that rivalry may guide attention if care 
is taken to suppress other signals that interfere with that guidance. 
Thus, binocular rivalry was listed under ‘doubtful cases and prob-
able non-features’ in ref. 37, but is now listed under ‘possible guiding 
attributes’ in Box 1.

Faces remain a problematic candidate for feature status, with a 
substantial literature yielding conflicting results and conclusions. 
Faces are quite easy to find among other objects50,51 but there is dis-
pute about whether the guiding feature is ‘face-ness’ or some sim-
pler stimulus attribute52,53. A useful review by Frischen et al.54 argues 
that “preattentive search processes are sensitive to and influenced 
by facial expressions of emotion”, but this is one of the cases where 
it is hard to reject the hypothesis that the proposed feature is mod-
ulating the processing of attended items, rather than guiding the 
selection of which items to attend. Suppose that, once attended, it 
takes 10 ms longer to disengage attention from an angry face than 
from a neutral face. The result would be that search would go faster 
(10 ms per item faster) when the distractors were neutral than when 
they were angry. Consequently, an angry target among neutral dis-
tractors would be found more efficiently than a neutral face among 
angry. Evidence for guidance by emotion would be stronger if the 
more efficient emotion searches were closer to pop-out than to clas-
sic inefficient, unguided searches, for example, for a T among L 
characters55. Typically, this is not the case. For example, Gerritsen 
et  al.56 report that “visual search is not blind to emotion” but, in 
a representative finding, search for hostile faces produced an inef-
ficient slope of 64 ms per item even if it is somewhat more efficient 
than the 82 ms per item for peaceful target faces.

There are stimulus properties that, while they may not be guid-
ing attributes in their own right, do modulate the effectiveness of 
other attributes. For example, apparent depth modulates apparent 
size, and search is guided by that apparent size57. Finally, there are 
properties of the display that influence the deployment of attention. 
These could be considered aspects of ‘scene guidance’ (see ‘Guidance 
by scene properties’ section). For example, attention tends to be 
attracted to the centre of gravity in a display58. Elements like arrows 
direct attention even if they themselves do not pop out59. As dis-
cussed by Rensink60, these and related factors can inform graphic 

design and other situations where the creator of an image wants to 
control how the observer consumes that image.

There have been some general challenges to the enterprise of 
defining specific features, notably the hypothesis that many of the 
effects attributed to the presence or absence of basic features are 
actually produced by crowding in the periphery3. For example, is 
efficient search for cubes lit from one side among cubes lit from 
another side evidence for preattentive processing of 3D shape and 
lighting61, or merely a by-product of the way these stimuli are repre-
sented in peripheral vision62? Resolution of this issue requires a set 
of visual search experiments with stimuli that are uncrowded. This 
probably means using low set sizes as in, for example, the evidence 
that material type is not a guiding attribute63.

A different challenge to the preattentive feature enterprise is the 
possibility that too many discrete features are proposed. Perhaps 
many specific features form a continuum of guidance by a single, 
more broadly defined attribute. For instance, the cues to the 3D lay-
out of the scene include stereopsis, shading, linear perspective and 
more. These might be part of a single attribute describing the 3D 
disposition of an object. Motion, onsets, and flicker might be part of 
a general dynamic change property64. Most significantly, we might 
combine the spatial features of line termination, closure, topologi-
cal status, orientation, and so on into a single shape attribute with 
properties defined by the appropriate layer of the right convolu-
tional neural net (CNN). Such nets have shown themselves capable 
of categorizing objects, so one could imagine a preattentive CNN 
guiding attention to objects as well65. So far, such an idea remains a 
promissory note. Regardless of how powerful CNNs may become, 
humans cannot guide attention to entirely arbitrary/specific proper-
ties in order to find particular types of object66 and it is unknown if 
some intermediate representation in a CNN could capture the prop-
erties of the human search engine. If it did, we might well find that 
such a layer represented a space with dimensions corresponding to 
attributes like size, orientation, line termination, vernier offset, and 
so on, but this remains to be seen.

Guidance by scene properties
While the field of visual search has largely been built on search for 
targets in arbitrary 2D arrays of items, most real-world search takes 
place in structured scenes, and this structure provides a source of 
guidance. To illustrate, try searching for any humans in Fig.  4. 
Depending on the resolution of the image as you are viewing it, 
you may or may not be able to see legs poking out from behind the 
roses by the gate. Regardless, what should be clear is that the places 
you looked were strongly constrained. Biederman, Mezzanotte, 
and Rabinowitz67 suggested a distinction between semantic and 
syntactic guidance.

Syntactic guidance has to do with physical constraints. You don’t 
look for people on the front surface of the wall or in the sky because 
people typically need to be supported against gravity. Semantic 
guidance refers to the meaning of the scene. You don’t look for peo-
ple on the top of the wall, not because they could not be there but 
because they are unlikely to be there given your understanding of 
the scene, whereas you might scrutinize the bench. Scene guidance 
would be quite different (and less constrained) if the target were 
a bird. The use of semantic and syntactic language should not be 
seen as tying scene processing too closely to linguistic processing 
nor should the two categories be seen as neatly non-overlapping68,69. 
Nevertheless, the distinction between syntactic and semantic fac-
tors, as roughly defined here, can be observed in electrophysiologi-
cal recordings: scenes showing semantic violations (for example, a 
bar of soap sitting next to the computer on the desk) produce differ-
ent neural signatures than scenes showing syntactic violations (for 
example, a computer mouse on top of the laptop screen)70. While 
salience may have some influence in this task71, it does not appear to 
be the major force guiding attention here24,72. But note that feature 

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.

http://dx.doi.org/10.1038/s41562-017-0058


NATURE HUMAN BEHAVIOUR 1, 0058 (2017) | DOI: 10.1038/s41562-017-0058 | www.nature.com/nathumbehav	 5

REVIEW ARTICLENATURE HUMAN BEHAVIOUR

guidance and scene guidance work together. People certainly could 
be on the lawn, but you do not scrutinize the empty lawn in Fig. 4 
because it lacks the correct target features.

Extending the study of guidance from controlled arrays of dis-
tinct items to structured scenes poses some methodological chal-
lenges. For example, how do we define the set size of a scene? Is the 
rose bush an item in Fig. 4, or does each bloom count as an item? In 
bridging between the world of artificial arrays of items and scenes, 
perhaps the best we can do is to talk about the ‘effective set size’10,73, 
the number of items/locations that are treated as candidate targets 
in a scene given a specific task. If you are looking for the biggest 
flower, each rose bloom is part of the effective set. If you are looking 
for a human, those blooms are not part of the set. While any esti-
mate of effective set size is imperfect, it is a very useful idea and it is 
clear that, for most tasks, the effective set size will be much smaller 
than the set of all possible items11.

Preview methods have been very useful in examining the mecha-
nisms of scene search74. A scene is flashed for a fraction of a second 
and then the observer searches for a target. The primary data are 
often eye-tracking records. It is common for these experiments to 
involve searching while the observer’s view of the scene is restricted 
to a small region around the point of fixation (‘gaze-contingent’ dis-
plays). Very brief exposures (50–75 ms) can guide deployment of the 
eyes once search begins75. A preview of the specific scene is much 
more useful than a preview of another scene of the same category, 
although the preview scene does not need to be the same size as 
the search stimulus74. Importantly, the preview need not contain the 
target in order to be effective76. Search appears to be more strongly 
guided by a relatively specific scene ‘gist’73,77, an initial understand-
ing of the scene that does not rely on recognizing specific objects78. 
The gist includes both syntactic (for example, spatial layout) and 
semantic information, and this combination can provide powerful 
search guidance. Knowledge about the target provides an independ-
ent source of guidance79,80. These sources of information provide 
useful ‘priors’ on where targets might be (“if there is a vase present, 
it’s more likely to be on a table than in the sink”), which are more 
powerful than memory for where a target might have been seen81,82,83 
in terms of guiding search.

Preview effects may be fairly limited in search of real scenes. If 
the observer searches a fully visible scene rather than being limited 
to a gaze-contingent window, guidance by the preview is limited to 
the first couple of fixations84. Once search begins, guidance is pre-
sumably updated based on the real scene, rendering the preview 
obsolete. In gaze-contingent search, the effects last longer because 
this updating cannot occur. This updating can be seen in the work of 
Hwang et al.85, where, in the course of normal search, the semantic 
content of the current fixation in a scene influences the target of the 
next fixation.

Modulation of search by prior history
In this section, we summarize evidence showing that the prior his-
tory of the observer, especially the prior history of search, modu-
lates the guidance of attention. We can organize these effects by 
their timescale, from within a trial (on the order of 100 s to ms) to 
lifetime learning (on the order of years).

A number of studies have demonstrated the preview benefit: 
when half of the search array is presented a few hundred milliseconds 
before the rest of the array, the effective set size is reduced, either 
because attention is guided away from the old ‘marked’ items (visual 
marking86) and/or toward the new items (onset prioritization87).

On a slightly longer timescale, priming phenomena are observed 
from trial to trial within an experiment, and can be observed over 
seconds to weeks. The basic example is ‘priming of pop-out’88, in 
which an observer might be asked to report the shape of the one 
item of unique colour in a display. If that item is the one red shape 
among green on one trial, responses will be faster if the next trial 

repeats red among green as compared with a switch to green among 
red; although the search in both cases will be a highly efficient, col-
our pop-out search. More priming of pop-out is found if the task is 
harder89. Note that it is not the response, or the reporting feature, 
that is repeated in priming of pop-out, but the target-defining or 
selection feature.

More generally, seeing the features of the target makes search 
faster than reading a word cue describing the target, even for over-
learned targets. This priming by target features takes about 200 ms 
to develop90. Priming by the features of a prior stimulus can be 
entirely incidental; simply repeating the target from trial to trial 
is sufficient91. More than one feature can be primed at the same 
time91,92and both target and distractor features can be primed91,93. 
Moreover, it is not just that observers are more ready to report tar-
gets with the primed feature; priming actually boosts sensitivity 
(that is, d’)94. Such priming can last for at least a week95.

Observers can also incidentally learn information over the course 
of an experiment that can guide search. In contextual cueing96, a 
subset of the displays are repeated across several blocks of trials. 
While observers do not notice this repetition, RTs are faster for 
repeated displays than for novel, unrepeated displays97. The contex-
tual cueing effect is typically interpreted as an abstract form of scene 
guidance: just as you learn that, in your friend’s kitchen, the toaster 
is on the counter next to the coffee maker, you learn that, in a con-
figuration of rotated Ls, the T is in the bottom left corner. However, 
evidence for this interpretation is mixed. RT  ×  set size slopes are 
reduced for repeated displays96 in some experiments, but not in 
others98. Contextual cueing effects can also be observed in cases 
where guidance is already nearly perfect, such as pop-out search99 
and attentionally-cued search100. Kunar et al.98 suggested that con-
textual cueing reflects response facilitation, rather than guidance. 
Again, the evidence is mixed. There is a shift towards a more liberal 
response criterion for repeated displays101, but this is not correlated 
with the size of the contextual cueing RT effect. In pop-out search, 
sensitivity to the target improves for repeated displays without an 

Figure 4 | Scene guidance. Where is attention guided if you are looking for 
humans? What if the target was a bird?
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effect on decision criterion99. It seems likely that observed contextual 
cueing effects reflect a combination of guidance effects and response 
facilitation, with the mix depending on the specifics of the task. 
Oculomotor studies show that the context is often not retrieved and 
available to guide attention until a search has been underway for 
several fixations102,103. Thus, the more efficient the search, the greater 
the likelihood that the target will be found before the context can be 
retrieved. Indeed, in simple letter displays, search does not become 
more efficient even when the same display is repeated several hun-
dred times104, presumably because searching de novo is always faster 
than waiting for context to become available. Once the task becomes 
more complex (for example, searching for that toaster)105, it becomes 
worthwhile to let memory guide search82,106.

Over years and decades, we become intimately familiar with, 
for example, the characters of our own written language. There is 
a long-running debate about whether familiarity (or, conversely, 
novelty) might be a basic guiding attribute. Much of this work has 
been conducted with overlearned categories like letters. While the 
topic is not settled, semantic categories like ‘letter’ probably do not 
guide attention107,108, although mirror-reversed letters may stand out 
against standard letters109,110. Instead, items made familiar in long-
term memory can modulate search111,112, although there are limits 
on the effects of familiarity in search113,114.

Modulation of search by the value of items
In the past few years, there has been increasing interest in the effects 
of reward or value on search. Value proves to be a strong modula-
tor of guidance. For instance, if observers are rewarded more highly 
for red items than for green, they will subsequently guide attention 
toward red, even if this is irrelevant to the task115. Note, colour is 
the guiding feature; value modulates its effectiveness. The learned 
associations of value do not need to be task-relevant or salient in 
order to have their effects116 and learning can be very persistent 
with value-driven effects being seen half a year after acquisition117. 
Indeed, the effects of value may be driving some effects of long-term 
familiarity described in the previous paragraph111.

Visual search is mostly effortless. Unless we are scrutinizing aer-
ial photographs for hints to North Korea’s missile programme, or 
hunting for signs of cancer in a chest radiograph, we typically find 
what we are looking for in seconds or less. This remarkable ability 
is the result of attentional guidance mechanisms. While thirty-five 
years or so of research has given us a good grasp of the mechanisms 
of bottom-up salience, top-down feature-driven guidance and how 
those factors combine to guide attention118,119, we are just beginning 
to understand how attention is guided by the structure of scenes and 
the sum of our past experiences. Future challenges for the field will 
include understanding how discrete features might fit together in a 
continuum of guidance and extending our theoretical frameworks 
from two-dimensional scenes to immersive, dynamic, three-dimen-
sional environments.

Received 11 October 2016; accepted 27 January 2016;  
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