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Neurocognitive signatures of 
Naturalistic Reading of Scientific 
texts: A Fixation-Related fMRI 
study
Chun-ting Hsu  1,2, Roy Clariana3, Benjamin schloss1 & ping Li1

How do students gain scientific knowledge while reading expository text? This study examines the 
underlying neurocognitive basis of textual knowledge structure and individual readers’ cognitive 
differences and reading habits, including the influence of text and reader characteristics, on outcomes 
of scientific text comprehension. By combining fixation-related fMRI and multiband data acquisition, 
the study is among the first to consider self-paced naturalistic reading inside the MRI scanner. Our 
results revealed the underlying neurocognitive patterns associated with information integration of 
different time scales during text reading, and significant individual differences due to the interaction 
between text characteristics (e.g., optimality of the textual knowledge structure) and reader 
characteristics (e.g., electronic device use habits). Individual differences impacted the amount of 
neural resources deployed for multitasking and information integration for constructing the underlying 
scientific mental models based on the text being read. Our findings have significant implications for 
understanding science reading in a population that is increasingly dependent on electronic devices.

Reading expository texts remains a primary means for students to acquire scientific knowledge. Learning from 
such texts crucially depends on the reader’s ability to construct a mental representation that can maximally cap-
ture the knowledge structure (KS) inherent in the text. The text’s KS reflects the author’s conceptual knowledge 
associations, and the text KS interacts with the reader’s cognitive abilities that together impact the learning out-
come of the reader’s representation of the scientific knowledge after reading1,2. The current study is designed to 
examine this interaction, specifically how the KS of the text (referred to as textual KS henceforth) interacts with 
the individual reader’s abilities in executive function and his or her reading habits (including electronic device 
usage). To understand this complex interaction properly, we studied expository science text reading at both the 
behavioural and the neurocognitive level, combining methods of network analyses of the reading material with 
statistical analyses of the data collected from self-paced naturalistic reading.

Until now, neurocognitive studies of reading comprehension have focused on narrative texts, and the major 
theories in the field have also been based on analyses of narrative texts3. When reading expository texts, the read-
er’s task is to identify the different possible relationships among often quite abstract concepts. These relationships 
can be correlational, temporal sequential, causal, or hierarchical, and can exist between pairs or clusters of con-
cepts. Comprehension of these relationships in the text (in addition to understanding the meaning of words and 
facts about the world) is thus key to the reader’s success in expository text comprehension4.

An influential model of reading comprehension, the Construction-Integration model5,6, suggests that text 
comprehension is organized in cycles, roughly corresponding to short sentences or phrases7,8. The construction 
process takes place early in the cycle, in which the reader forms concepts and propositions from the linguistic 
input. Later in the cycle, the integration process establishes an elaborated propositional representation that is 
internally coherent and reasonably consistent with the discourse context and with the reader’s world knowledge. 
However, this early construction vs. late integration dual-stage processing view has been recently challenged by 
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the view of parallel integration of information at different levels and scales. For example, Kuperberg and Jaeger9 
proposed that during reading, predictive candidates are activated before the incoming new information is pro-
cessed (i.e., top-down processing). The predictive pre-activation encompasses multiple levels of representations 
including syntactic, semantic, phonological, orthographic and perceptual. From the perspective of memory, 
Hasson et al.10 argued that all cortical circuits are involved in information accumulation in a hierarchical organ-
ization. The primary perceptual-motor systems have short process memory, while the higher order areas such as 
temporoparietal junction, angular gyrus, and medial prefrontal cortex have long process memory. The primary 
process areas are modulated by the fronto-parietal network of attentional control, while the higher-order areas 
by the medial temporal lobe (hippocampal) circuit of binding and consolidation. Therefore, the construction 
and integration processes might not be temporally dissociable, and instead, it is the brain regions that integrate 
information at different time scales of memory processes that should and can be empirically differentiated, such 
as distinct neural networks involved in the integration of local and global contexts11.

For expository texts, the information integration process encompasses analogous transfer12,13 or knowledge 
revision3, where updated situation models14 or mental models15 are generated. The extent to which the reader 
generates an appropriate situation model, an integrative mental representation of the text knowledge, depends 
on the one hand on how the knowledge is conveyed to them (e.g., text properties) and on the other, the reader’s 
cognitive abilities, including abilities to retain information in memory, sustain attention during reading, and 
formulate abstract concept relations (i.e., reader characteristics). These knowledge-specific and reader-specific 
characteristics can be examined, as in this study, under the umbrella of textual KS, and executive function and 
reasoning abilities, respectively.

Knowledge Structure as Network Maps
Textual KS refers to how concepts/units of information are organized in an expository text16. Kintsch and van 
Dijk first proposed this idea using graphs to represent the network of coherent propositions8 in texts and Ferstl 
and Kintsch were among the first to apply network measures to estimate a reader’s situation model17. Network 
maps are one common explicit visual representation of KS, which consist of pairs of concepts (represented as 
nodes) joined by link lines (represented as edges) indicating relationships between pairs of concepts. This type 
of KS representation is now well established in the literature (see Kinchin et al.18 for discussion). In this study, we 
extracted the textual KS as network maps according to Clariana19. This process involves several steps as described 
in the Methods section.

Among numerous network metrics that could be derived, centrality has been proposed as one of the most 
basic and pragmatic ways to describe network maps20. The centrality of a node in a network indicates the relative 
importance of that node in relation to all other nodes, and this measure has been used as a way to quantify the 
structure or shape of concept maps21. For example, Kinchin et al.18 categorized concept maps in terms of the 
network topologies of spoke, chain, and net (Fig. 1), and a major discriminating criterion was graph centrality. 
The spoke type concept map has a large graph centrality value, meaning that one central concept is connected 
to a large proportion of all other concepts. It represents a KS of simple associations, with no hierarchy and little 
integration of concepts. On the opposite end of this spectrum is the chain type map, which has a small graph 
centrality value, representing a sequential KS of isolated conceptual understanding with few associations among 
the concepts. Such concept maps are susceptible to “meltdown” from a single broken link, and are unlikely to then 
reorganize. In between these two extreme types is the net type map that has a medium graph centrality value, rep-
resenting a KS of higher integrity with several levels of hierarchy and with complex interactions between levels. 
Reorganization of KS by incorporating would-be knowledge is well supported in maps of the net type, and miss-
ing links can more easily be compensated with redundant paths. For example, four behavioural studies22–25 that 
have considered this relationship have reported an ‘inverted U-shape function’ (as suggested by Rikers et al.26)  
for network graph centrality (abscissa, x-axis) and post-test measures (ordinate, y-axis), with the function’s maxi-
mum agreeing with the network graph centrality of the experts’ network. In sum, the shape of the network (spoke, 
net, chain) is related to the degree of conceptual integrity in the KS, and can be represented by different centrality 
scores.

Applying this logic in this study, we consider network maps with medial graph centrality values to represent 
near optimal textual KS, whereas maps with (extremely) high or low graph centrality values represent sub-optimal 
textual KS. Specifically, we use the maximal betweenness centrality (MBC)27 value, the highest betweenness cen-
trality values of all nodes in a network to describe the characteristic of each textual network map. Also, we use 
the quadratic terms of the mean-centred/normalized MBC values as a measure of textual KS optimality: higher 
quadratic centrality values (further away from zero) indicate sub-optimal KS, while lower quadratic centrality val-
ues (closer to zero) indicate more optimal KS; the adoption of the quadratic terms is based on several established 
observations in previous studies22–25. Note that the definition of sub-optimal text here does not automatically 
mean a ‘bad’ or ‘incoherent’ text. Rather, the text KS typology depends on the nature of the domain knowledge; 
for example, optimal KS here refers to texts that have a KS structure hierarchically organized as central versus 
peripheral concepts.

Executive Function, Reasoning, and Text Comprehension
Text comprehension results from how executive functions and analogical reasoning are employed by the reader 
to process the textual information28. Executive functions consist of a set of dissociable processes that coordinate 
cognition and facilitate goal-oriented behaviour29. Follmer’s30 meta-analysis showed positive correlations between 
reading comprehension and the following components of executive function: working memory, shifting, inhibi-
tion, and sustained attention and monitoring. In particular, working memory is needed to maintain and update 
textually relevant information on a constant basis, thereby facilitating the reader’s development of a mental rep-
resentation of the text31. In the current study, we assess these four important components of executive functions 
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through widely used standardized tests, the ‘attention network test’32 for measuring shifting and inhibition and 
the ‘letter-number sequencing test’33 for measuring working memory.

Another cognitive ability, analogical reasoning12, also significantly affects reading comprehension, although it 
is less well examined as compared with executive function. In analogical transfer12, the existing KS serves as the 
source or reference, and the newly formed textual KS is the target in the analogical process. For example, in chem-
istry classes, the solar system is often used as the source/referential analogy when explaining atomic structure 
(target concept). Analogical reasoning is also involved in reading when readers revise or update existing KS based 
on the new textual KS through reading comprehension. They compare and detect any inconsistency between the 
two, and if successful, further convert and incorporate the text information into prior knowledge for future use3. 
In this study, we assess analogical reasoning by using a standardized test, the Raven’s Progressive Matrices34.

Although no neuroimaging work has examined text comprehension based on the reader’s analogical reasoning 
ability, there is a sizable literature on the neural correlates of analogical reasoning. An aggregated meta-analysis of 
7 studies35 showed neural correlates of semantic analogy in left IFG, MFG, frontopolar cortex (FPC), dorsolateral 
prefrontal cortex (DLPFC), and bilateral caudate heads. In particular, the left FPC is also involved in analogical 
reasoning of matrix problem tasks (e.g., based on Raven’s task) and visuospatial domains. This finding is consist-
ent with the proposal that FPC is critical for integrating the outcomes of separate cognitive operations to facilitate 
long-term goal oriented behaviour36,37.

electronic Device and Reading
Individual differences also exist in areas other than executive function and analogical reasoning, and in a recent 
study, Follmer et al.38 investigated how different reading background variables relate to the individual’s read-
ing comprehension of STEM (Science, Technology, Engineering, Mathematics) texts. Using a large sample 
of Mechanical Turk participants, they showed that STEM text comprehension was negatively correlated with 
reported frequency of reading on electronic devices (e.g., smartphones, tablets, computers) as well as with 
reported frequency of non-reading behaviour on electronic devices (e.g., watching television). At the same time, 
STEM text comprehension was positively correlated with self-reported level of reading attitudes and preferences 
(e.g., enjoyment of challenging books, learning difficult things via reading). These disturbing findings provided 
initial evidence of how the emerging electronic reading habits may fundamentally alter readers’ comprehension 
of expository scientific texts39.

Previous studies have investigated the effect of paper vs. screen-based reading comprehension (see Sidl et al.40 
for a review), with findings indicating that reading on a screen, as compared with reading on paper, may lead to 

Figure 1. Three main concept map structures (reproduced from Kinchin et al.18). (A) Spoke – a radial structure 
in which all the related aspects of the topic are linked directly to the core concept, but are not directly linked 
to each other. (B) Chain – a linear sequence of understanding in which each concept is only linked to those 
immediately above and below. (C) Net – a highly integrated and hierarchical network
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worse performance (or more reading time for achieving the same level of performance). Such discrepancies have 
been attributed to aspects of the technology such as visual fatigue and less convenient navigation, and also to the 
impact of electronic devices on metacognitive processes (e.g., overconfidence and reduced self-regulation and 
monitoring). However, recent studies have taken personal preferences of platforms into consideration: when not 
under time pressure, some readers who prefer the electronic platform actually show an effect of screen superi-
ority41. In the current study, our focus with regard to the relationship between electronic device and reading will 
be on individual differences in the habits (and daily duration) of using electronic device, and the effect of these 
differences on reading comprehension.

the Current study
This study systematically investigates the relationships among executive functions, analogical reasoning, and elec-
tronic and non-electronic reading behaviour, and their impact on reading comprehension at both the behavioural 
and the neurocognitive levels. As previously mentioned, most neurocognitive studies of text comprehension have 
focused on narrative texts28,42,43. For example, the Extended Language Network hypothesis42 suggests that the 
classic language network, the semantic control and integration network, and the executive function network are 
simultaneously engaged during narrative text comprehension. Swett et al.44 was among the first to investigate the 
neural correlates of expository text comprehension. Consistent with the idea of multiple networks, Swett et al. 
reported patterns of co-activation in the brain’s key regions of cognitive control, visual processing, and language/
semantic integration. Specifically, expository text comprehension also engages the core semantic-processing net-
work for integrating word- and sentence-level semantic information, and additional multi-modal regions that 
create and update the situation/mental models for the text being read. The authors further reported different 
patterns for central versus peripheral text concepts, which implies that good readers notice and use the implicit 
textual KS of the expository text by focusing on the central and peripheral concepts differently (i.e., recruiting 
different regions of the brain).

In fMRI studies of reading, it is important to know the exact onset time of words and phrases to convolve 
the hemodynamic response function (HRF) with specific task-related variance and isolate it from unexplained 
variance. To this end, we employed a paradigm called “fixation-related fMRI”45 (see Methods for more details). 
Previous neuroimaging studies of texts dealt with the stimulus timing issue by controlling the presentation rate 
of the stimuli, typically with individual words, phrases, or sentences shown in a rapid-serial-visual-presentation 
or RSVP paradigm46. But reading every word for half a second in succession of one another is not a natural 
reading experience. To overcome this problem, we have taken advantage of an emerging paradigm that explores 
simultaneous eye-tracking and fMRI data acquisition (fixation-related fMRI). With this paradigm, participants 
are allowed to self-pace materials during reading in the scanner in a more naturalistic manner than reading via 
RSVP47. To match the fast speed of eye-movements and the cognitive processes during reading, we further used 
the multiband echo-planar imaging (EPI) acquisition technique48 to reduce the fMRI repetition time (TR) to 
400 ms, in contrast to the typical TR of 2000 ms used in task-based fMRI studies. Multiband EPI provides greater 
within-participant statistical power with a higher sampling rate, a higher temporal Nyquist frequency to detect 
fast oscillatory neurally generated BOLD signals49, and better removal of spurious non-BOLD high frequency 
signal content50. By integrating eye-movement and high sampling-rate fMRI data in a naturalistic paradigm, our 
study is poised to provide neurocognitive insights into naturalistic scientific text comprehension.

To analyse the data collected from fixation-related fMRI, we incorporated a parametric modulator of the index 
of word position in sentences (starting from 1) in our fMRI GLM analysis. This approach aims to capture the 
variance in the HRF that changes along the time course of sentential processing across the text. It corresponds to 
the hypothesis of the Construction-Integration model5,6 that cycles of text comprehension roughly corresponds 
to short sentences or phrases7,8. Note that such a regressor, even though it is temporally based, would also capture 
variances associated with other concomitant cognitive processes which evolve along the time course of sentence 
reading (e.g., predictive pre-activation at syntactic, phonological, orthographic and perceptual levels9). Neural 
patterns negatively correlated with this regressor would be more involved in the early stage of sentential process-
ing, which could be associated with the construction phase of the cycle or the integration of local information 
within the sentence. Neural patterns positively correlated with this regressor would be involved in the late stage 
of sentential processing, which could be associated with the integration phase, as well as the integration of the 
sentential information with more global context of the current textual representation or world knowledge. The 
beta images of this regressor (variance along the time course of reading a sentence) could be further used to inves-
tigate the effects of stimuli (e.g., textual KS) and individual differences (e.g., executive function). In a naturalistic 
reading paradigm such as used in the current study, these concomitant cognitive processes are not dissociable, 
and they are indeed vital in language comprehension9.

Given the approaches reviewed thus far, we make the following hypotheses. First, regarding the effects of tex-
tual KS, we hypothesize that when processing expository scientific texts with sub-optimal KS, cognitive demands 
of executive function should be higher due to the construction of a situation/mental model from the text; as a 
result, the associated neural correlates will be reflected as stronger activation in the executive control network, 
including the prefrontal cortex and the cingulate cortex. Second, regarding the effects of reader characteristics 
and individual differences, we hypothesize that executive function, analogical reasoning, and positive reading 
attitude will be positively correlated with reading comprehension performances. Neurocognitively, such cor-
relations should be reflected as co-activation in areas including the left IFG, MFG, FPC, dorsolateral prefrontal 
cortex (DLPFC), and bilateral caudate heads, areas that are critical for executive function, analogical reasoning, 
and linguistic-semantic integration when processing scientific text28,35,42–44.
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Results
Behavioural performances and individual differences. Participants read five expository texts in 
the scanner. Every participant made at least six correct answers to the 10 multiple-choice assessment questions 
at the end of each text during in-scanner reading. The accuracy for the questions for each text was as follows 
(mean% ± SD, n = 51): Mathematics, 94.71 ± 7.84, GPS, 90.98 ± 9.22, Mars, 91.76 ± 9.10, Electric Circuit, 
95.10 ± 7.03, and Supertanker, 88.40 ± 11.14. ANOVA showed significant differences among participants’ perfor-
mance accuracy on the texts (F(4,250) = 5.32, p = 0.0004). Specifically, post-hoc Tukey’s HSD test showed that per-
formance accuracy differed significantly between Electric Circuit and Supertanker (lower and upper confidence 
limit = 2.17, 11.94, p = 0.0009) and between Mathematics and Supertanker (LCL = 1.78, UCL = 11.55, p = 0.002).

Participants’ mean performance accuracy varied depending on the individual difference scores: it was pos-
itively correlated with GSRT scores (n = 49, ρ = 0.65, p < 0.0001), with Raven’s score of analogical reasoning 
(n = 49, ρ = 0.28, p = 0.027), and with reading preference index (n = 49, ρ = 0.27, p = 0.029). Further, the GSRT 
was also positively correlated with the working memory LNS task (n = 46, ρ = 0.36, p = 0.007) and with Raven’s 
scores (n = 49, ρ = 0.33, p = 0.011). GSRT scores also showed a positive trend though not significant correlation 
with the reading preference index (n = 49, ρ = 0.23, p = 0.059).

fMRI Results: Main effects and individual differences of integrative processing. Neural correlates 
of reading (Content Word fixation) were reflected in the strong activity in bilateral visual cortex and medial sup-
plementary motor area (SMA), along with left precentral gyrus, superior and middle temporal gyrus (STG and 
MTG), anterior temporal lobe (aTL), inferior frontal gyrus (IFG) pars triangularis, and hippocampus (Table 1, 
Fig. 2).

Neural correlates of Integrative processing were reflected in two different patterns: the first one, negatively 
correlated with the word position regressor, was associated with strong activities in bilateral occipital pole, poste-
rior cingulate cortex (PCC), pregenual anterior cingulate cortex (pgACC), as well as left fusiform and precentral 
gyrus (Table 1, Fig. 3, blue); the second, positively correlated with the word position regressor engaged DLPFC, 
IFG pars triangularis, precuneus, lingual gyrus, MTG and ITG, as well as left IPL, medial SMA, insula, and the 
parahippocampal gyrus (PHG) (Table 1, Fig. 3, red). One cluster in the left insula and IFG pars triangularis 
showed negative correlation between the E-device reading index and Integrative processing (MNI: [27 20 18]; 
Table 1, Fig. 4).

fMRI Results: Main effects and individual differences of KS optimality. After the linearly correlated 
variance of MBC (maximum betweenness centrality) was partialled out, the quadratic term of MBC represented 
the optimality of textual KS (with values closer to 0 being more optimal; see Introduction). Neural correlates of 
the processing of texts with optimal KS revealed strong activity in the left DLPFC and left middle STG, while the 
processing of sub-optimal KS led to greater activity in the left frontopolar cortex (FPC) and bilateral dorsal ACC 
(Table 2, Fig. 5A,B). Furthermore, left FPC and bilateral SMA were correlated with the processing of sub-optimal 
KS texts among participants with higher GSRT scores (Fig. 5C,D), suggesting an interaction between textual KS 
properties and reader characteristics (e.g., of high-vs-low reading competence). Finally, this text-reader interac-
tion was also reflected in the regression results of E-device reading index: during processing of sub-optimal KS 
texts, neural responses in the left temporoparietal junction (TPJ, Fig. 5E) increased with E-device reading index, 
while responses in the right claustrum (Fig. 5F) decreased. These interactions have significant implications for 
student science concept learning, as discussed below.

Discussion
The current study investigated the neurocognitive processes underlying the interaction between properties of 
expository texts and characteristics of the reader, specifically between the textual KS (network structure of the 
texts to be read) and the individual readers’ executive function, reasoning, and reading habits. Our study also 
showed that readers’ electronic device usage is negatively correlated with the involvement of key brain regions for 
integrative information processing. To our knowledge, this study is the first systematic behavioural and neurocog-
nitive investigation of expository texts of scientific concepts with a naturalistic reading paradigm that combines 
both fMRI and eye-tracking.

First, at the behavioural level, we found that student performance in reading comprehension is correlated 
with individual differences in executive functions, analogical reasoning, and positive reading attitude. The GSRT 
general reading ability scores are correlated with analogical reasoning and positive reading attitude, for both 
in-scanner performance and immediate post-test assessment questions. GSRT scores were also correlated with 
individual differences in working memory. These patterns are in line with previous studies that have identified 
the relationships between reading comprehension and executive functions30 and between comprehension and 
reading behaviour38.

The relationships among reading comprehension and executive function, reasoning, and reading attitudes 
are not one-to-one, but are multidirectional and complex. For example, better executive function might lead to 
superior reading comprehension, and conversely, better reading experience could improve readers’ reasoning, 
attention, and working memory. Readers with a positive reading attitude engage in more reading activity, which 
leads to more rewarding experiences and in turn more positive reading attitude. Different reader characteristics 
could also be related to each other: for example, reasoning has been proposed to require working memory capac-
ity in the mental model theory15, engaging working memory’s underlying executive processes51. Finally, reading 
comprehension performance may be correlated with the student’s success in other domain disciplines: reasoning 
abilities have been found to be predictive of academic achievements in Mathematics, Biology, Physics, History, 
and English52,53. Our findings that scientific text reading comprehension is correlated with individual differences 
in working memory and analogical reasoning are consistent with these general findings but also more specifically 
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demonstrate that individual difference variables impact scientific reading. Although these correlations could have 
underlying causal relations, the current study was not designed to test causal relationships, which need to be 
investigated in future studies.

Second, at the neurocognitive level, we found dynamic neural correlates of integrative information processing, 
suggesting a local predictive focus on surface form analysis (visual cortex and fusiform gyrus) and a global pre-
dictive focus on semantic, syntactic analysis and integration (frontoparietal network and SMA). Such change in 
focus across the time course of processing is in line with the different time-scale analysis of text comprehension. 
At the beginning of reading a new sentence, integration of local information within the sentence takes place, 
which demanded primary perceptual-motor areas with short process memory. The more the reader proceeds 
along the sentence, the more the integration of sentential information with global context of the current textual 
representation or world knowledge takes place, which demanded higher order areas with long process memory, as 
predicted by models of memory and text comprehension6,9–11. Thus, temporal ordering and integrative processing 
may be related at multiple levels and time scales, although the predictive pre-activation hypothesis9 emphasizes 
that integrative processing is due to parallel integration rather than staged processing across time.

With regard to the impact of text properties, texts that have optimal textual KS recruit regions associated 
with linguistic, semantic (IFG and temporal lobe), and integrative processing (DLPFC). Texts with sub-optimal 
textual KS recruit regions that are critical for dual-tasking, monitoring, and attention (FPC and dACC), suggest-
ing that these texts elicit more effortful processing during mental model construction. Furthermore, reading 

H Regions Voxel p T B.A. [x, y, z]

Neural Correlates of Reading*
B Cuneus & lingual gyrus 1455 <0.001 15.16 23 & 18 12 −76 10

B SMA 140 <0.001 9.04 6 & 32 −9 11 54

L Precentral gyrus and MFG 112 <0.001 7.98 6 −42 −7 62

L MTG & STG 179 <0.001 7.88 21 −57 −25 −2

L IFG pars triangularis 30 0.001 6.5 45 −48 20 18

L Hippocampus 8 0.002 6.25 −24 −31 −6

L aTL 5 0.002 6.23 38 −48 17 −26

Neural Correlates of Early/Local Integrative Processing*
R IOG 49 <0.001 8.05 27 −91 −6

B PCC & Precuneus 139 <0.001 7.82 31 −9 −52 26

L Precentral 22 <0.001 7.64 6 −48 −4 42

R VMPFC & pgACC 113 <0.001 7.4 10 & 32 9 53 −10

R Cuneus 21 <0.001 6.92 17 12 −85 2

L Fusiform, lingual & IOG 86 <0.001 6.74 19, 18 & 17 −24 −79 −18

B pgACC 47 <0.001 6.72 32 −9 44 −2

L IOG 9 0.012 5.72 19 −30 −88 14

R Insula 5 0.012 5.7 13 42 −31 −6

Neural Correlates of Late/Global Integrative Processing*
R Lingual gyrus and cerebellum 212 <0.001 9.84 19 24 −61 −6

L IPL & Supramarginal gyrus 126 <0.001 8.51 40 −39 −46 42

B SMA 48 <0.001 8.14 32 −3 23 46

L DLPFC & IFG pars triangularis 223 <0.001 8.12 6 & 46 −21 17 58

L Insula 28 <0.001 7.82 13 −42 −7 10

L Cuneus 49 <0.001 7.73 18 −6 −97 −6

L Parahippocampal gyrus 44 <0.001 7.45 36 −30 −37 −14

L MTG & ITG 50 <0.001 7.15 37 & 20 −57 −55 −10

R DLPFC 38 <0.001 6.83 6 27 8 58

R Precuneus 33 <0.001 6.74 31 27 −79 22

R IFG pars triangularis 8 0.001 6.39 46 54 41 14

L Precuneus & Angular gyrus 17 0.002 6.29 19 −30 −73 42

L Cuneus 7 0.011 5.75 19 −9 −85 26

Neural Correlates of Integrative Processing for Individuals with lower E-device Usage**
L Insula & IFG pars triangularis 70 0.01 4.89 13 & 47 −30 17 14

Table 1. Neural Correlates of Reading and Integrative Processing. *Voxel-level FWE corrected p-values. 
**Cluster-level FWE corrected p-values with CDT p = 0.001 uncorrected. Abbreviations: DLPFC = dorsolateral 
prefrontal cortex; IFG = inferior frontal gyrus; IOG = inferior occipital gyrus; IPL = inferior parietal 
lobule; ITG = inferior temporal gyrus; MTG = middle temporal gyrus; PCC = posterior cingulate cortex; 
SMA = supplementary motor area; VMPFC = ventromedial prefrontal cortex; H = hemisphere; L = left; 
R = right; p = p-value; T = T-value; B.A. = Brodmann area; x, y, z = MNI coordinates.
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competence (as measured by GSRT scores) is reflected clearly in the processing of texts with sub-optimal KS: 
high-competence readers activate regions in integrative information processing in the SMA and FPC, as well as 
regions for linguistic processing in IFG, insula and STG, suggesting the engagement of multiple brain networks 
for conceptual integration.

Due to the nature of the hemodynamic response function, we used the content word fixation regressor to cap-
ture the variance of neural responses throughout text reading. Neural correlates of this regressor included the typ-
ical fronto-temporal circuit engaged in language, syntactic and semantic processing (IFG, STG, MTG, aTL)42,54, 
but also the SMA and hippocampus. SMA, including the supplementary eye field (SEF) and the pre-SMA which 
has traditionally been implicated in motor planning and motor learning55. However, in the context of semantic 
retrieval, Danelli et al.56 found the SMA, premotor, and left IFG to be involved in both grapheme-to-phoneme and 
lexical-semantic routes of lexical access. Further, pre-SMA has been proposed to be part of a network including 
thalamus and caudate nucleus that govern aspects of semantic retrieval of object memories, supported by EEG 
data57. The left SMA is also associated with syntactic processing as shown in a recent meta-analysis54. The SMA 
and pre-SMA activity could be part of the on going predictive pre-activation process across multiple levels during 
reading comprehension9. In addition, Duff and Brown-Schmidt58 proposed that the hippocampal declarative 
memory system is a critical contributor to language use and processing because of its capacity for relational bind-
ing, representational integration, flexibility, and maintenance. In Hasson et al.’s memory processing hierarchy10, 
the medial temporal hippocampal region would also interact with regions with long process memory, and facil-
itate binding and consolidation of incoming information with global context and world knowledge. Given these 
findings in the literature, it is not surprising that SMA and the hippocampus both play crucial roles in expository 
text comprehension as shown in our current study, since the predictive and integrative processes take place irre-
spective of the text genre (i.e., narrative or expository).

Augmented by the high-sampling rate (400 ms TR, a Nyquist frequency of 800 ms) of multiband EPI acqui-
sition in our current design (see Methods), the parametric modulator of word position in sentences successfully 
captured the dynamic change of neurocognitive integrative processes along different time scales during reading 
comprehension (mean reading time for each sentence = 3.33 ± 0.86 s). Our results indicated that the temporal 
evolution of integrative processes shifted from relatively shallow, form-oriented and local processing (e.g., involv-
ing the occipital cortex and fusiform gyrus) to more global processing that involves semantic retrieval, informa-
tion integration, and situational/mental model updating that engage the DLPFC, IFG, IPL, and SMA. Previous 
work based on narrative text reading has implicated the frontoparietal network in situation model building, an 
integrative mental representation of the text, with a rough division of labour in situation model construction 

Figure 2. Neural correlates of content word processing. (A) Lateral view of the left hemisphere. (B) Medial view 
of the left hemisphere. Both showing significant voxels in the left visual cortex, SMA, precentral gyrus, IFG and 
STG and MTG. (C) Medial view of the right hemisphere showing the right visual cortex and SMA. (D) Sagittal 
section with cross hair at MNI [−24 −31 −6] highlighting the significant voxels in the left hippocampus. (E) 
Sagittal section with cross hair at MNI [−48 17 −26] highlighting the significant voxels in the left aTL.
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(the posterior parietal and anterior temporal regions) and situation model maintenance (frontal regions)46. Our 
finding of the dynamic changes at the sentential level, although from scientific rather than narrative text reading, 
is consistent with the theoretical framework that the situation/mental model is constantly updated as reading 
comprehension unfolds in time14,59. Such dynamic changes are seen in cognitive domains other than language 
or reading: for example, Fangmeier et al.60 showed a similar pattern of shift in neural correlates during different 
stages of reasoning in which the initial processing of the premise involves occipital and temporal regions, whereas 
the validation of a given conclusion based on the premise engages the frontoparietal network (DLPFC, IPL, and 
precuneus).

By modelling the knowledge structure of a text as network maps (e.g., textual KS), we were able to capture the 
differences in the neural correlates of expository science text reading as a function of text structure. Specifically, 
the graph-theoretical measure MBC (referred to as graph centrality) of a textual KS network allowed us to repre-
sent texts with optimal (network-like maps) vs. sub-optimal (spoke- or chain-like) KS18, and such KS differences 
directly impact the neurocognitive substrates of reading. Previous behavioural studies22–25 have suggested an 
inverted U-shape function between network graph centrality of knowledge structure and reading comprehension 
performances. By using the U-shaped quadratic term of knowledge structure as regressor, we found that the pro-
cessing of optimal KS texts recruits classical language processing brain regions (left M/STG), along with regions 
that involve situation/mental model construction and information integration (left DLPFC), whereas processing 
of sub-optimal KS texts engaged activities in the left FPC and bilateral dorsal ACC.

In the context of multitasking research, FPC and ACC have been proposed to serve complementary but dis-
sociable roles in allocating resources for cognitive control of the primary and subgoals/tasks61,62. While ACC has 
been frequently implicated in language processing (especially conflict monitoring in bilingual speech produc-
tion)63, the role of FPC (Brodmann Area 10) has been traditionally linked to a variety of higher-order cognitive 
functions based on human and primate research64. Specifically, FPC has been associated with the ability to hold 
a primary goal while performing concurrent subgoals, playing an important role in multitasking and multiple 
resource allocation61,65–67, including reasoning and integration of multiple disparate mental relations68. Given 
this role of FPC in integrative processing, it is no surprise that we see it involved in the processing of sub-optimal 
KS texts that have (1) spoke-like KS, where a core concept is associated with multiple isolated concepts, and (2) 
chain-like KS, where concepts are serially associated one by one. In these cases, multitasking is required of the 
reader so as to retain the core concept while processing and integrating multiple isolated sub-concepts across 

Figure 3. Neural correlates of integrative processing (word position effect). Surface rendering of negative 
(green) and positive (red) correlation with the word position index in sentences. (A) left hemisphere lateral 
view, (B) right hemisphere lateral view, (C) left hemisphere sagittal section of MNI x = −5, (D) right 
hemisphere sagittal section of MNI x = 5. Green regions are more activated in the beginning of sentences 
(negatively correlated with the word position index in sentences) including bilateral visual cortex, PCC and 
pgACC and left precentral gyrus. Red regions are more activated towards the end of sentences including 
bilateral DLPFC and IFG, left IPL, M&ITG and SMA.
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the text. Note that the quadratic effect of graph centrality (as measured with MBC) in FPC and ACC in our data 
cannot be accounted for by its relation with other psycholinguistic variables such as word length or word fre-
quency, although the latter have also been shown to have curvilinear/quadratic effect on both behavioural69 and 
neuroimaging correlates of reading70. It is important to note that MBC measures of the texts are largely collinear 
with the text-wise mean values of key psycholinguistic variables such as word frequency, AoA, and word length 
(see Section Materials in Method). However, in our subject-level regression model, we included both linear and 
quadratic terms of MBC, and the linear term was included as a covariate of non-interest. Therefore, the confound-
ing linear effects of the psycholinguistic variables were partialled out before the group-level multiple regression.

The impact of electronic device usage is evident in our results. Across all texts, we found a negative correlation 
between frequency in electronic device usage and BOLD activity in left insula and IFG pars triangularis. The 
anterior insula is part of the salience network71, which responds to the degree of information saliency (and subse-
quent attention) in a variety of domains including cognitive and emotional processing72–74. Sridharan et al.75 used 
Grainger Causality to estimate effective connectivity, proposing that the fronto-insular cortex plays a critical and 
causal role in switching between the central-executive network and the default-mode network. In addition, our 
data indicate that individuals with higher electronic device usage, on the one hand, have decreased engagement 
in insula and IFG, and on the other, recruit more left TPJ and less right claustrum when processing texts with 
sub-optimal KS. The claustrum has the highest connectivity in the brain by regional volume, especially with the 
frontal lobe and cingulate regions76, and it has been proposed to be the “gate keeper” of neural information for 
conscious awareness77. Considering the potential negative effects of excessive daily usage of electronic device 
(especially texting on smartphones), the neural patterns in our data regarding insula and claustrum, along with 
the behavioural data of Follmer et al.38, could point to the readers’ reduced or inefficient coordination of cognitive 
resources and switching between the central executive and default mode networks. At the same time, the result of 
over-engagement of the TPJ, part of the executive network71, might suggest that these same readers required more 
effortful processing, especially for texts with sub-optimal KS of the spoke or chain types.

Finally, we found that individuals with higher GSRT scores engage the left FPC and bilateral SMA more 
strongly when reading texts with sub-optimal KS. As discussed above, FPC and SMA may be significant for 
expository text comprehension given their important roles in multi-tasking, cognitive resource allocation, and 
visuospatial processing. Our neurocognitive patterns suggest that better reading ability is associated with the 
engagement of neural substrates responsible for highly integrative cognitive processes as well as for reasoning. By 

Figure 4. Neural correlates of integrative processing negatively correlated with individual E-device usage. 
The sections show the significant cluster in left insula and IFG pars triangularis in which the beta estimates for 
integrative processing were negatively correlated with the individual E-device usage reported in the RBQ. The 
crosshair highlights the peak in the cluster, MNI: [27 20 18].
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contrast, readers who report excessive daily electronic device usage may not activate these critical brain regions 
for integrative cognitive processing. As discussed in the Introduction, behavioural work on the immediate effect 
of media (paper vs. screen) has, by and large, shown that excessive use of screen-based devices is associated with 
lower quality of metacognitive processes40,41. Our findings provided the first neurocognitive evidence that habit-
ual electronic device usage might adversely affect high-level cognitive processing required for scientific text com-
prehension. Future investigation is needed to identify the causal relationships among reading habits, preferences 
of media types, metacognitive performances, and expository text comprehension.

Methods
Participants. Sixty-two right-handed native English speakers were recruited. Seven participants did not 
finish the first session due to eye-tracker or MR scanner technical issues. One participant was excluded due 
to very low accuracy (50%) for an in-scanner comprehension test and poor behavioural testing results outside 
the scanner. One participant was found to be left-handed after the behavioural session, leaving 51 participants 
aged between 18 and 40 years in our analysis. Eye-tracking data were missing for one participant during one 
run containing one text, leading to its exclusion for the analysis for KS. Forty-nine out of the 51 participants 
completed the behavioural testing session, of which only 46 correctly performed the Letter Number Sequencing 
task. Therefore, behavioural data analysis included 49 participants (23 males, mean age ± SD = 22.69 ± 4.57). 
fMRI data for neural correlates of Reading and Integrative Processing included 51 participants (24 males, mean 
age ± SD = 22.67 ± 4.52). Forty-six participants (21 males, mean age ± SD = 22.84 ± 4.63) were included in the 
fMRI multiple regression models for neural correlates of individual differences in Integrative Processing. Forty-
five participants (21 males, mean age ± SD = 22.47 ± 3.88) were included in fMRI regression models for neural 
correlates of individual differences in sentential processing of texts with different KS optimality.

All participants had normal or corrected to normal vision, and had no history of mental or neurological dis-
order. The study was approved by the Pennsylvania State University Institutional Review Board (IRB) and was 
performed in accordance with the ethical standards described in the IRB. Written informed consent was obtained 
from all participants before they took part in the study.

Materials. Prior to the experiment, five expository texts of STEM contents were modified from previous 
research stimuli (see Follmer38 for details): Mathematics (Permutations and Combinations, 28 sentences, 306 
words, maximal betweenness centrality/MBC = 0.34), GPS (28 sentences, 307 words, MBC = 0.29), Mars (31 
sentences, 310 words, MBC = 0.59), Electric Circuit (30 sentences, 302 words, MBC = 0.16), and Supertanker (31 
sentences, 302 words, MBC = 0.72). Texts were controlled for the mean word count per sentence (10.4 ± 0.62) 
and the mean character count per sentence including spaces (62.48 ± 1.92). Furthermore, psycholinguistic var-
iables of the lexical properties (word frequency, length, etc.) of each text were derived from the English Lexicon 
Project78 the Kuperman age-of-acquisition (AoA) database79, the MRC Database80 and the Brysbaert concreteness 
database81. Bootstrapped One-way ANOVAs revealed no significant difference between the average values across 
all five texts for the average number of syllables (NSyll, F = 0.05, p = 0.99), lexical decision time (LDT, F = 1.07, 
p = 0.38), log frequency (F = 0.25, p = 0.91), naming response time (NRT, F = 1.41, p = 0.23), orthographic neigh-
bourhood density (OLD, F = 0.04, p = 0.99), phonological neighbourhood density (PLD, F = 0.34, p = 0.85), con-
creteness (F = 0.24, p = 0.91), and number of phonemes (NPhon, F = 0.02, p = 0.99). However, one-way ANOVAs 
for average word length and AoA were significant at p < 0.05 (F = 3.27, F = 3.32, respectively). Text-wise, mean 
values of psycholinguistic variables were linearly correlated with the linear term of MBC (OLD, r = 0.92 p = 0.025; 
PLD, r = 0.92, p = 0.0285; NSyll, r = 0.92, p = 0.0268; NPhon, r = 0.88, p = 0.0487; LDT, r = 0.9, p = 0.0356; NRT, 

H Regions Voxel p T B.A. [x, y, z]

Neural Correlates of Integrative Processing for Texts with Optimal KS

L MTG & STG 122 0.001 4.81 22 & 21 −51 −46 −2

L DLPFC (SFG & MFG) 92 0.003 4.66 6 & 8 −48 11 50

Neural Correlates of Integrative Processing for Texts with Sub-optimal KS

B dACC 204 <0.001 5.21 32 3 35 26

L FPC (MFG) & IFG pars triangularis 66 0.015 4.42 46 & 10 −39 44 10

Neural Correlates of Sub-optimal KS Processing in Individuals with higher GSRT

L FPC (MFG) 77 0.007 5.19 10 −30 38 26

L SMA 70 0.01 5.09 6 −12 −1 62

Neural Correlates of Sub-optimal KS Processing in Individuals with higher E-device Usage

L TPJ (MTG & Angular gyrus) 50 0.039 4.21 22 & 39 −36 −58 18

Neural Correlates of Sub-optimal KS Processing in Individuals with lower E-device Usage

R Claustrum 53 0.031 5.81 27 20 18

Table 2. Neural Correlates of Optimality of KS. *Cluster-level FWE corrected p-values with CDT p = 0.001 
uncorrected. Abbreviations: dACC = dorsal anterior cingulate cortex; DLPFC = dorsolateral prefrontal cortex; 
FPC = frontopolar cortex; IFG = inferior frontal gyrus; MFG = middle frontal gyrus; MTG = middle temporal 
gyrus; SMA = supplementary motor area; STG = superior temporal gyrus; TPJ = temporoparietal junction; 
H = hemisphere; L = left; R = right; p = p-value; T = T-value; B.A. = Brodmann area; x, y, z = MNI coordinates.
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r = 0.91, p = 0.034; frequency, r = 0.89, p = 0.0453; AoA, r = 0.88, p = 0.049; length, r = 0.87, p = 0.053, concrete-
ness, r = 0.88, p = 0.0487). Stimuli were presented using E-Prime 2.082, sentence by sentence onto a screen which 
was then projected onto a reflective mirror mounted above the participants’ eyes in the MRI scanner (see section 
Eye-tracking Data Acquisition and Processing for details).

KS quantified as maximal betweenness centrality (MBC, Graph Centrality). Fifteen key terms 
were selected as nodes from each of the five texts38, along with their synonyms and metonyms. The key terms 
were aggregated from a key-term generating task of a previous Amazon MTurk study of 403 participants38 and a 
key-term generating task of the authors of the current study (with a general overlap of 88%). The edges between 
the nodes are defined as proximity associations between nodes, operationalized as follows: a forward pass is made 
through the text without regard to sentence boundaries, and for every key term that is found, it is linked to the 
immediate previous key term by entering a “1” (binary coding) in a 15 by 15 term proximity array, indicating 

Figure 5. Neural correlates of KS optimality and individual differences. (A,B) Neural correlates of integrative 
processing for texts with different KS optimality. Red: neural correlates of texts with sub-optimal KS (quadratic 
MBC values away from 0), including bilateral dACC and left FPC and IFG pars triangularis. Green: neural 
correlates of texts with optimal KS (quadratic MBC values closer to 0), including left DLFPC, STG and MTG. 
Panel B showed the sagittal section of MNI x = 3. (C,D) Neural correlates of texts with sub-optimal KS in 
individuals with higher GSRT scores, including left FPC and SMA. Panel D showed the sagittal section of MNI 
x = 3. (E) Left IPL correlated with sub-optimal KS processing in individuals with higher E-device usage. (F) 
Right claustrum (crosshair MNI = [27 20 18]) correlated with sub-optimal KS processing in individuals with 
lower E-device usage.

https://doi.org/10.1038/s41598-019-47176-7


1 2Scientific RepoRts |         (2019) 9:10678  | https://doi.org/10.1038/s41598-019-47176-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

that there is a link (edge) between the two terms. Textual network maps were thus generated with Analysis of 
Lexical Aggregates Reader (ALA-Reader)19. Maximal Betweenness Centrality per map/text as a measure of graph 
centrality (and measure of KS) was calculated using the NodeXL software (Microsoft Inc., 2018). For a node k 
in a network, its partial betweenness with respect to the other two nodes i and j is defined as the probability that 
node k falls on a randomly selected path linking nodes i and j. The betweenness centrality value of node k is the 
sum of the partial betweenness values in respect to all pairs of nodes in the network except for k27. Each node in a 
network has a betweenness centrality value. Note that the betweenness centrality measure depends on the num-
ber of nodes in the graph27, and the absolute value of MBC per se does not indicate the optimality of KS. In the 
current study, the lengths of all the texts were made comparable (roughly 300 words), and we used 15 nodes (key 
concepts) to construct concept maps for all five texts so that the graph centrality values and the range of optimal 
KS values are also comparable across the texts. To operationalise the optimality of textual KS, the centrality values 
were normalised and quadratic terms were calculated. Higher quadratic centrality values (further away from zero, 
which is the average in the normalised distribution) indicate sub-optimal KS, while lower quadratic centrality 
values (closer to zero) indicate more optimal KS.

Procedure. After providing consent, participants underwent a structural MRI scan, followed by a practice 
session for self-paced reading in the scanner. They were instructed to click a button to advance from one sen-
tence to the next. Each sentence was presented for up to 8 seconds after which the next sentence automatically 
appeared on the screen. At the end of each text they answered 10 comprehension questions. Once the practice 
session ended, the participants completed five self-paced reading sessions, during which time simultaneous fMRI 
and eye-tracking data were collected. On a second visit, which was usually one week after the in-scanner reading 
session, participants completed a battery of behavioural tests.

Behavioural data collection and processing. In the behavioural session, the Gray Silent Reading Test, 
Raven’s Progressive Matrices, Letter Number Sequencing and Attention Network tests were presented to par-
ticipants via E-Prime 2.0, and the Reading Background Questionnaire was completed on an internet browser. 
Detailed information of each test is as below.

Gray Silent Reading Test (GSRT). The GSRT test measures reading comprehension competence83. Up to 13 nar-
rative texts were provided the in GSRT, and each text was presented alongside five assessment questions. Adult 
participants started with Text No. 8 (a text of middle-level difficulty) and were tested downward (e.g., Text No. 7) 
until the basal was reached (i.e., when all five questions were answered correctly), and upward (e.g., Text No. 9) 
until the ceiling was reached (i.e., 3 out of 5 answers were wrong). Because all participants were in the same age 
group (18 and beyond), conversion of scores to quotient according to age groups was not necessary, and the raw 
scores were used.

Raven’s progressive matrices. The Raven’s test measures analogical reasoning34. In each of the sixty-five tests, a 
matrix of relations, from which part is omitted, is presented. Subjects have to choose, from a group of six or eight 
alternatives, the one which completes the matrix. The problems are arranged in five sets, each of which has a 
distinctive theme: (A) continuous patterns, (B) analogies between pairs of figures, (C) progressive alterations of 
patterns, (D) permutations of figures and (E) resolution of figures into constituent parts. The first problem in a set 
is intended to be self-evident, and it is succeeded by twelve problems of increasing difficulty. The testing time was 
limited to 10 minutes, and the number of corrected trials was used as the score.

Letter number sequencing (LNS). The LNS task measures working memory. The task was adapted from the 
Wechsler Adult Intelligence Scale (WAIS-III)33. Participants heard a series of alternating letters and numbers 
and were asked to recall the numbers first in ascending order and then the letters in alphabetical order. The task 
began with a set size of two (one letter plus one number) and increased by one for every three trials until a set size 
of eight was reached. The participants’ outputs were corrected for using capital letters (if lower-case letters were 
the targets) and accidental usage of arrow keys. To properly reflect the difficulty of different items, size-weighted 
scores were calculated as the summation of correct items’ set size. For example, if the participant was correct in 
three items with the size of two, one item with the size of three, and two items with the size of four, the score will 
be calculated as 3 × 2 + 1 × 3 + 2 × 4.

Attention network test (ANT). The ANT tests measure the alerting and orienting skills of attention and the 
inhibitory control ability of executive function32. It consisted of a flanker test in which a central arrow was pre-
sented with congruent or incongruent flanking arrows, and the participants were asked to give indicate the direc-
tion of the central arrow as fast and as accurately as possible. The row of arrows could appear above or below 
the fixation cross. In some trials before the arrows appeared, one or two asterisks would appear. They could 
either alert the participants that the arrows will appear soon but without orienting the location of the arrows, or 
alert them that the arrows will appear soon and direct attention to the correct location (orienting). Three scores 
were derived according to Fan et al.32, reflecting the RT differences caused by alerting, orienting, and conflicting 
manipulations; for example, the higher the conflict effect on RT, the lower the participant’s inhibitory control is.

Reading Background Questionnaire (RBQ). Participants were administered 20 questions constructed based on 
previous research84,85 to assess readers’ general reading habits and background, using a Google Form38. The items 
asked about participants’ reading habits on electronic media (e.g., computers, smartphones), their electronic 
non-reading behaviour (e.g., time spent texting friends, watching television), and their reading habits (amount 
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of time spent on reading), preferences (e.g., enjoyment of types of books, enjoyment of books about different cul-
tures), attitudes towards reading, and reading ability. Items were administered using either a 4-point or a 5-point 
Likert scale.

Correlational analyses showed significant correlations between E-device reading and non-reading time, and 
pair-wise correlations among reading time, reading preference and reading attitude/ability (see also Follmer et 
al.’s analyses38 of how these variables impact reading). Exploratory factor analysis yielded two factors: Factor 
1 explains 34.45% of variance, including reading preference (loading = 0.90), reading attitude/ability (load-
ing = 0.66) and reading time (loading = 0.64); Factor 2 explains 21.67% of variance, including E-device reading 
(loading = 0.97) and non-reading time (loading = 0.31). Given these two factors, we simplified the RBQ variables 
into two scores: E-device reading index (summation of E-device reading and non-reading time) and reading 
preference index (summation of reading preference, reading attitude/ability and reading time).

Behavioural data analyses. To test what cognitive measures contribute to participants’ reading compre-
hension behaviourally, we performed non-parametric correlation tests checking correlations between GSRT or 
question-answering accuracy with the Raven’s scores, LNS scores, the ANT Alerting, Orienting, and Conflict 
scores, the RBQ E-device reading and reading preference indices. Because the mean accuracy of the perfor-
mance assessment scores and the GSRT scores violated the assumption of normality (Shapiro-Wilk W test, both 
ps < 0.01), one-tailed non-parametric Spearman’s correlations were used.

Eye-tracking data acquisition and processing. The basic idea of fixation-related fMRI paradigm, as 
first explored by Marsman et al.86, is to use self-paced eye-movements to convolve the hemodynamic responses 
and model the psychological regressors to analyse fMRI data of visual processing. Later studies45,87 have further 
demonstrated the validity of simultaneous eye-tracking and fMRI paradigms in naturalistic word and text read-
ing. Eye movements were recorded with an Eye-Link 1000 Plus long-range mount MRI eye tracker (SR-Research) 
with a sampling rate of 1 kHz. The camera was placed at the rear end of the scanner bore, and captured eye move-
ments via a reflective mirror above the head coil. The distance between the camera and the participant’s eyes via 
the reflective mirror was 120 cm. Recording was monocular (from the right eye), and the participant’s head was 
stabilized in the head coil. A 13-point calibration routine preceded the experiment. Before each reading session, 
a validation procedure is performed, and re-calibration is done when the validation error is larger than 1 degree.

Data adjustment was later performed to address drifting issues caused by the calibration accuracy decline over 
time. For fixations falling outside (above or below) the range of predefined target regions, manual adjustment was 
performed using the Data Viewer software. Instead of using auto-adjustment which brings all fixations onto one 
horizontal line, we performed trial-by-trial correction adjusting all of the fixations in a single try only along the y 
axis (vertical adjustment) so as to maintain readers’ original eye fixation patterns.

MRI data acquisition. Data were acquired using a 3 T Siemens Magnetom Prisma Fit scanner with a 
64-channel phased array coil. We acquired a MPRAGE scan with T1 weighted contrast [176 ascending sagit-
tal slices with A/P phase encoding direction; voxel size = 1 mm isotropic; FOV = 256 mm; TR = 1540 ms; 
TE = 2.34 ms; acquisition time = 216 s; flip angle = 9°; GRAPPA in-plane acceleration factor = 2; brain coverage 
is complete for cerebrum, cerebellum and brain stem]. After the T1, we acquired five functional runs of T2* 
weighted echo planar sequence images [30 interleaved axial slices with A/P phase encoding direction; voxel 
size = 3 × 3 × 4 mm; FOV = 240 mm; TR = 400 ms; TE = 30 ms; acquisition time varied on the speed of self-paced 
reading, maximal 306 s; multiband acceleration factor for parallel slice acquisition = 6; flip angle = 35°; brain 
coverage misses the top of the parietal lobe and the lower end of the cerebellum]. Additionally, we collected a 
pair of spin echo sequence images with A/P and P/A phase encoding direction [30 axial interleaved slices; voxel 
size = 3 × 3 × 4 mm; FOV = 240 mm; TR = 3000 ms; TE = 51.2 ms; flip angle = 90°] to calculate distortion correc-
tion for the multiband sequences88.

fMRI data preprocessing and analyses. Data preprocessing and analysis were performed in SPM12 
v6906 (http://www.fil.ion.ucl.ac.uk/spm). Functional imaging preprocessing consisted of correction of field 
inhomogeneity artefacts with the HySCO toolbox (Hyperelastic Susceptibility Artifact Correction)89 using the 
pair of spin echo sequence images and realignment for motion correction. The structural image was coregistered 
to the mean functional image, and segmented into grey matter, white matter, cerebrospinal fluid, bone, soft tis-
sue, and air/background to estimate the forward deformation parameters to MNI space. Images were normal-
ized with the 4th degree B-Spline Interpolation algorithm and further smoothed with a Gaussian kernel of 8 mm 
full-width-at-half-maximum (FWHM).

In the GLM analysis, the design matrix contained one psychological regressor of interest, the “Content Word” 
condition, specifying the onsets and gaze durations of first pass fixations and regressions for content words 
(informed by eye-tracking data). The index of word position in sentences (starting from 1) was incorporated 
as a parametric modulator of the “Content Word” condition. We also included two psychological regressors of 
non-interest: “Non-Content Word” and “Instructions”: the “Non-Content Word” condition modelled fixations 
on non-content (function) words and ocular regressions, and the “Instructions” condition modelled two sec-
onds of instructions presented at the beginning of each run. Because of the self-paced reading, all psychological 
regressors at the first level were subject-specific. Finally, we included six motion parameters and three physio-
logical regressors (white matter, ventricular, and non-ventricular CSF space signal). We then applied a high pass 
filter with a cut off period of 128 s, and the temporal autocorrelation was accounted for with the FAST option in 
SPM1290. Then, we calculated fixed effects across all runs for each subject. At the group level, two random-effect 
one sample t-tests (N = 51) were performed for the effects of reading in general (Content Word fixation), and 
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Integrative Processing (parametric effect of word positions). We applied peak-level family-wise error (FWE) cor-
rection of p < 0.05, minimal cluster size = 5 voxels, for the main effects of both one sample t-tests.

At the group-level, the beta maps of the Integrative Processing obtained at the subject-level were entered into 
one multiple regression model as the dependent variable (N = 46). The following eight independent variables 
were included to checked the effect of individual differences: (1) GSRT, (2) Raven’s, (3) span-weighted LNS, the 
(4) Alerting, (5) Orienting, and (6) Conflict effects of the ANT, (7) the RBQ E-device reading index and (8) the 
RBQ reading preference index. At the whole brain level, we applied cluster-level FWE-correction p < 0.05, using 
a cluster-defining threshold of p = 0.001.

To further investigate Integrative Processing due to the effects of textual KS (measured as MBC, see Materials 
in the Methods), the beta maps of Integrative Processing of each text were entered into a subject-level regression 
model including the linear and quadratic terms of MBC as the independent variable. At the group level, the beta 
maps of quadratic MBC correlates of the Integrative processes were entered into an one-sample t-test (N = 50) for 
the main effect and a multiple regression model (N = 45) with the same eight independent variables for individ-
ual differences as mentioned before. We applied cluster-level FWE-correction p < 0.05, using a cluster-defining 
threshold of p = 0.001, for the main effects of the one-sample t-test and for each individual difference in the mul-
tiple regression model of MBC.

Data Availability
All behavioural, eye-tracking and neuroimaging data (with personal information de-identified) have been made 
available on OpenNeuro (https://openneuro.org/datasets/ds001980/versions/1.0.1) and on the PI’s lab website 
(http://blclab.org/).
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