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In eye movement research in reading, the amount of data plays a crucial role for the validation
of results. A methodological problem for the analysis of the eye movement in reading are blinks,
when readers close their eyes. Blinking rate increases with increasing reading time, resulting in
high data losses, especially for older adults or reading impaired subjects. We present a method,
based on the symbolic sequence dynamics of the eye movements, that reconstructs the horizontal
position of the eyes while the reader blinks. The method makes use of an observed fact that the
movements of the eyes before closing or after opening contain information about the eyes movements
during blinks. Test results indicate that our reconstruction method is superior to methods that use
simpler interpolation approaches. In addition, analyses of the reconstructed data show no significant
deviation from the usual behavior observed in readers.

I. INTRODUCTION

Studies of eye movements have revealed enor-
mous insights into the understanding of cogni-
tive processes during visual search, scene viewing
and reading. The development of high resolution
techniques that allow researchers to record the
eye movements online during experiments con-
stitute the base for the research in this field.
Systems range from coil systems, Electro-Oculo-
Graphy EOG systems and video based systems
(e.g. Eyelink) to systems using infrared light to
capture the pupils movements, such as the Dual
Purkinje, corneal reflection and pupil boundary
systems. All of those systems require that the
reader’s eyes are open and closing the eyes in-
escapably means loss of data measurement. A
typical and natural closure of the eyes is the
blink, a brief closing of the eyelids. Blinks can
occur spontaneously, as a normal periodic clos-
ing (e.g. for eye lubrication), reflexively (protec-
tive, e.g. due to an air puff or an object moving
towards the eyes) and voluntarily (e.g. by com-
mand) [1]. In this work, we propose a method,
based on the symbolic sequence dynamics of the
eye movements, to reconstruct the eye positions
during blinks in a reading experiment, in which
readers were instructed to read 144 isolated sen-
tences of the Potsdam Sentence Corpus (PSC).
The main assumption behind this approach, for
reconstructing the eyes position during a blink, is

that the eyes movements before and after a blink
occurs carry information about how the eyes be-
have during a blink.

In reading research, we distinguish between saccades,
rapid eye movements of the eyes with high velocities, and
fixations, when our eyes remain relatively still between
the saccades. The function of a saccade during read-
ing text is to bring a new text section into foveal vision,
where visual acuity is highest.

Two important questions arise when the reader closes
his eyes. Did the reader make a saccade ? If the reader
did make a saccade, at what time did the saccade start?
The exact starting time of a saccade is crucial for the de-
tection of fixations and influences fixation durations. The
later the saccade happened during a blink, the longer will
be the detected fixation prior to the blink. Fixation dura-
tion is the primary measure related to cognitive processes
during reading comprehension.

One approach to treat the reading data with blinks is
to exclude the trials during which blinks occur. A trial
includes the recording of the eye positions while read-
ing a given sentence. A different approach would be to
analyze the trial up to the point in time when a blink
occurred. Both approaches might exclude relevant infor-
mation concerning the particular dynamics of eye move-
ments in reading and blink phases. Therefore, it would
be of high value to the data analysis in reading research,
especially in data sets of older readers, to reconstruct a
complete sequence of saccades and fixations per trial.

If the reader did not make a saccade while the eyes
were closed, then the eyes have not moved during the
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blink and their position before and after the blinking is
roughly the same. The problem appears when a saccade
happens during a blink and the challenge is to accurately
reconstruct such a saccade.

The first difficulty in treating eye movement data is
provided by its clear non-stationarity characteristic (see
Sec. II), mainly caused by the reader’s goal to read
the sentence which commands the spontaneous dynam-
ics of the eyes composed by the alternation between (mi-
cro)saccades [2] and fixations. In addition, once that
the reader decides to make a saccade, there is a ran-
dom time-delay until the moment the saccade is actually
realized (see Ref. [3]). So, the movement of the eyes
is not only non-stationary but also contains stochastic
components. These characteristics together unable one
to model the eyes positions by the usual time-delay re-
constructing technique [4].

The second difficulty is the fact that the eyes’ dynam-
ics is the result of a typical complex system [5], a system
whose output is produced by the interaction of many
systems, which presumably has a high-dimensional out-
put. In fact, on the one hand, the long-term evolution
of the eyes movements have a high-dimensional charac-
ter, which calls for some kind of stochastic model [6].
On the other hand, the short-term evolution of the eye
movements possess a dynamic typical of low-dimensional
systems, in particular a saccade.

In order to resolve the first difficulty, instead of work-
ing with the eye position, we work with the eye velocity
(see Sec. IV). The velocity is the most simple tech-
nique to transform a non-stationary data into a station-
ary one. This technique is often used to treat complex
data. Among the many works, this technique was used
in the analysis of microsaccades (rapid eyes movements)
[7], stock market fluctuations [8], and plasma turbulence
[9].

To resolve the second difficulty, we make models that
consider the dual low-high-dimensional characteristic of
the eye movements. First, we model the short-term evo-
lution of the eye oscillations, in particular a saccade, us-
ing a low-dimensional system, a one-dimensional damped
oscillator (see Sec. III). The main parameters that ad-
just this oscillator to saccades, the period and the damp-
ing coefficient, are obtained from both the low and high
dimensional characteristics of the eye movements.

For the purpose of finding such parameters we use a
technique suitable for treating complex data, the sym-
bolic dynamics [5, 10]. A complex system with infinite
number of possible output values, in particular the eye
velocities, is transformed into a much simpler system by
encoding their velocities using a few number of letters,
creating the symbolic sequences (see Sec. IV). In this
work, we consider symbolic sequences composed of 4 let-
ters.

The symbolic dynamics technique has a powerful prop-
erty that can be explored to treat systems that possess
different dynamics for different time-scales. A short-
length symbolic sequence generated from short-term time

intervals provides an instantaneous visualization of the
movement of the eyes, while a large-length symbolic se-
quence generated from long-term time intervals might
reveal stochastic properties [11] of the eye movements,
averages, and other quantities. Stochastic properties can
also be obtained by producing averages of many short-
length symbolic sequences. These properties are funda-
mental to the success of our reconstruction method.

In order to know whether and when a saccade happens,
during a blink, we consider symbolic sequences created
by encoding the eye velocities before and after this blink
occurs (see Secs. IV and V). To know whether a sac-
cade happens, we compare the probabilities of finding
certain groups of short-length symbolic sequences before
and after this blink, with the probabilities of finding those
short-length symbolic sequences before and after all sac-
cades observed during all the trials in an experiment. At
this point, we take advantage of the statistical charac-
ter of short-length symbolic sequences. To know when a
saccade happens, we search in the large-length symbolic
sequences particular repeating sequences of letters that
correspond to the encodings of oscillations that the eyes
make before or after making a saccade.

Notice that an experiment is composed of many tri-
als. In addition, the dynamics of the eyes is highly in-
fluenced by what is being read, and besides during an
experiment the participant makes a series of blinks. As a
consequence, we cannot construct infinity large symbolic
sequences, but symbolic sequences with a finite length
smaller than L. Further, we decompose these sequences
in even smaller sequences regarded as words.

We define L in the following way: Symbolic sequences
of length larger than L contain roughly the same con-
tent of information of symbolic sequences of length L.
So, the long-term character of the symbolic sequences is
provided by finite-size symbolic sequences of length not
larger than L. For our experiment, L is of the order of
60, which means symbolic sequences composed of 60 let-
ters, corresponding to a time interval of 120ms (see Sec.
V).

Once we have ensured that a saccade occurs during a
blink and we have obtained an estimation of the time
the saccade starts and its period, the time series is re-
constructed by assuming that the position of the eyes
before and after the occurrence of a blink can be opti-
mally connected by a time series generated by a simple
one-dimensional damped oscillator (see Sec. VIII).

In order to check if our method can really reconstruct
saccades during blinks, we study its performance to re-
construct the position of the eyes during artificially cre-
ated blinks. As shown in Sec. VII, our method can re-
construct saccades much better than if we had made the
reconstruction assuming that a saccade happens in the
middle of a blink, having a period given by the average
period of all the saccades observed in all trials.

Finally, we have shown (in Sec. IX) that relevant read-
ing measures that reflect cognitive processing are not af-
fected by our reconstruction method, which validates our
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method from the psychological point of view.
In appendix A, we show the most important parame-

ters, variables, and constants considered in this work.

II. EXPERIMENTAL DATA
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FIG. 1: [Color online] Points represent the horizontal position
of the right eye P in pixels in the computer screen over time,
for one trial. The (red) circle indicates the time at which
a sentence is presented on the screen. The (green) square
indicates the time when the participant finishes reading the
given sentence. (A) A few saccades are indicated by the thick
inclined arrows and a few fixations by the thin vertical arrows.
(B) A blink is indicated by the arrow. During the blink, the
participant’s eyes made a saccade.

Data. In this work, we consider only data from the hor-
izontal position of the right eye, denoted by P . A sample
of the raw data set is shown in Figs. 1(A-B), where P
in pixels is plotted over time. In both figures, the typ-
ical alternation between saccades and fixations can be
observed. In Fig. 1(B) we observe a data loss (the posi-
tion P is set to zero) due to a blink that occurred while
the eyes made a saccade, indicated by the misalignment
of the signal before and after the blink.

Participants. The method of reconstruction was ap-
plied on data sets of four young participants (mean age
18.5 years) and three old participants (mean age 72.3
years). All participants had normal or corrected to nor-
mal vision. Visual acuity was assessed with a standard
optical chart (Landolt rings; 5 m distance). Eye move-

ments of 26 other young participants and 22 other old
participant serve as a baseline to compare gains of the
reconstructed data with non reconstructed data. Each
individual data set of the seven participants is identified
by Iη, with η = [1, . . . , 7]. Average number of blinks per
minute for the seven subjects was 6.97 blinks/min.

Apparatus. Single sentences were presented on the cen-
ter line of a 21-in. EYE-Q 650 Monitor (832 pixels x 632
pixels resolution; frame rate 75 Hz; font: regular, New
Courier, 12 point) controlled by an Apple Power Macin-
tosh G3 computer. Participants were seated in front of
the monitor with the head positioned on a chin rest. Eye
movements were recorded with an EyeLink II system (SR
Research, Toronto) with a τ = 2 ms sampling rate. All
recordings and calibrations were binocular.

Procedure. In an experimental reading study, partic-
ipants were instructed to read 144 isolated sentences of
the Potsdam Sentence Corpus (PSC) for comprehension
(cf. Ref. [12] [3] for further details on material and pro-
cedures).

III. DYNAMICS OF THE SACCADE

Two typical saccades are shown in Figs. 2(A-B) in
black solid line. In (A), the position of the right eye
moves to the right, making a rightward saccade, while in
(B), the eye moves to the left, making a leftward saccade.
A saccade begins at time tsb = iτ if |P (i + 1) − P (i)| >
4pixels, for i = [tsb/τ+k] and k = 1, 3. The period of the
saccade t0 is determined by checking if P (m + 1)−P (m)
changes the signal once, for m > tsb/τ + 3. So, t0 =
(m− i)τms. The final position of the eye after a saccade,
the beginning of a fixation happens for the time tfb if
for c > tsb/τ + t0, the signal of P (c + 1) − P (c) changes
three times. While reading all the sentences a participant
makes Ns saccades. Each saccade can be identified by
the following parameters [A(j), δ(j), tsb(j), t0(j), tfb(j)],
with j = [1, Ns], where A(j) + δ(j) is the amplitude of
the saccade j, being A(j) = |P (tfb)−P (tsb)| and δ(j) =
|P (tsb + t0) − P (tfb)|. These quantities are represented
in Fig. 2(A).

We model the dynamics of the horizontal position of
the eye during a saccade in the same way eyelid saccades
were modeled in Ref. [13], using a damped oscillator
described by

Ẍ(t′) + 2g(t′)Ẋ(t′) + ω2X(t′) = 0 (1)

with X(t′ = 0)=A(j) and Ẋ(t′ = 0)=0. Equation (1) can
describe a saccade in the coordinate system of the eye
position P (t′), for the saccade j, if the following trans-
formation is applied
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P (t′) =

{

X(t′) + P (tfb) : P (tfb) − P (tsb) < 0
−X(t′) + P (tsb) + A(j) : P (tfb) − P (tsb) > 0.

(2)

The time t′ in Eq. (1) is transformed to the time t of the
experiment by

t′ = t − tsb (3)

time

40

60

80

100

120

140

160

P
  (

pi
xe

ls
)

real data
model

time

350

400

450

A

δ

t
0

(A) (B)

P(t
fb

)

P(t
sb

+t
0
)

P(t
sb

)

FIG. 2: [Color online] Thick black line represents a typical
rightward (A) and leftward (B) saccade. Solution of Eq. (1)
is shown by the gray (red) line.

The saccades are modeled by Eq. (1) with param-
eters g (damping coefficient) and ω (angular frequency
of the saccade oscillation) such that this equation de-
scribes a supercritical damped harmonic oscillator. This
hypothesis is sustained by the fact that most of the time
δ(j) ≪ A(j). However, in 10% of the saccades we find
that δ(j) ≈ A(j) or δ(j) is slightly bigger than A(j),
which violates this hypothesis. For a more general model
for saccades one could use the dynamical system pro-
posed in Ref. [14]. However, for the scope of the present
work, Eq. (1) is a sufficiently good model for a saccade.
Note that if δ(j) ≈ A(j) that usually implies that A(j)
is small and therefore, for a short time interval the sac-
cade can be well approximated by the supercritical model
which produces almost a straight line. In addition, the
effect of this small saccade in the data treatment is small.

Then, for the saccade j, we assume that

g(j) =
1

t0(j)
log

(

A(j)

δ(j)

)

(4)

and

ω(j) =
π

t0(j)
. (5)

In conclusion, a saccade can be uniquely defined
by the following minimal set of three parameters
[g(j), ω(j), A(j)]. Using the obtained minimal set of pa-
rameters, we model the saccades of Figs. 2(A-B) using
Eqs. (1), (2), and (3). The model qualitatively repro-
duces the real data, as can be seen in Figs. 2(A-B). Dur-
ing a blink, however, in case a saccade happens, g and
w are undetermined and will be estimated by searching
for special patterns in the symbolic encoding of the eye
velocities of time series before and after the occurrence
of a blink.

IV. SYMBOLIC CHARACTERIZATION OF

THE EYE DYNAMICS

One of the most efficient techniques to turn a non-
stationary data set into a stationary set is to work with
the velocity space, instead of using the phase space. The
velocity of the eye is given by V (iτ) = [P ((i + 1)τ) −
P (iτ)]/τ , which will be denoted by Vi. The velocity is
still a very complex variable. To reduce its complex-
ity without compromising its content of information, we
symbolize the data series using a small-size alphabet com-
posed of 4 letters: {0, 1, 2, 3}.

The velocity space, a first returning map of the velocity
variable, is shown in Fig. 3(A). Points in the horizontal
axis represent the relation between the velocity at the
”time” i [iτ , in units of ms] and in the vertical axis, the
velocity at time i + 1 [(i + 1)τ ]. In this figure, we plot
the velocity space for all short time series (tdτ = 48ms)
before a saccade begins, at the time tsb(j). That is, we
consider the time interval [tsb(j) − tdτ, tsb(j)]. In Fig.
3(B), we plot the velocity space for all short time series
(tdτ = 48ms) right after the saccade j reaches its maxi-
mum, at the time tsb(j) + t0(j). So we consider the time
interval [tsb(j) + t0(j), tsb(j) + t0(j) + tdτ ]. Notice that
there is a clear visual difference between both velocity
spaces, which reflects a difference in the eye movements
before and after saccades happen.

The symbolic encoding of the velocity variable is done
by first splitting the velocity space in the four partitions
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as represented by the dashed lines in Fig. 3(A-B), and
then assigning letters if the velocity trajectory is within
one of these partitions: if Vi > 0 and Vi+1 > 0, we encode
this point by a ’0’; if Vi ≥ 0 and Vi+1 ≤ 0, we encode
this point by a ’1’; if Vi < 0 and Vi+1 < 0, we encode
this point by a ’2’; if Vi ≤ 0 and Vi+1 ≥ 0, we encode
this point by a ’3’. Thus, a trajectory with td + 1 points
Vi, Vi+1, Vi+2, . . . , Vi+td+1 is encoded into a symbolic se-
quence with td letters, regarded as sk(j), with k=[1, td].
td is assumed to be an even number, so we can easily
split the symbolic sequences into two non-overlapping se-
quences.

For the visualization of the symbolic sequences, we
split them into two non-overlapping words of td/2 let-
ters, and encode these two words into two real numbers
Sn(j) and Sn+1(j) by the following rule

Sn(j) =

td/2
∑

k=1

sk4−k−1

Sn+1(j) =

td
∑

k=td/2+1

sk4−k−td/2−1 (6)

Then, we plot the numbers Sn versus Sn+1.
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FIG. 3: The velocity space for all short time series (tdτ =
48ms) before a saccade begins (A), at the time tsb(j), and
after the saccade j reaches its maximum (B), at the time
tsb(j) + t0(j). Symbolic spaces of the pre-saccade sequences,
sk(pre), (C) and the post-saccade sequences, sk(post) (D).
Every real in (C-D) encodes a word of 24 letters, i.e. td=24.

The existence of blinks together with the fact that sen-
tences have a limited number of symbolic sequences, and
further the fact that an experiment consists of many tri-
als unable one to consider longer symbolic sequences. In-
stead, we work with symbolic sequences of length smaller

than L. These symbolic sequences are constructed in a
way to reflect some particular characteristic of the eye
movements.

In this work, we consider the following types of sym-
bolic sequences: The length-td symbolic sequences, td ≤
L, sk(pre, j) and sk(post, j) are constructed using the en-
coding of the eye movements before the saccade j starts
(time interval [tsb(j)− tdτ, tsb(j)]) and after this saccade
ends (time interval [tsb(j) + t0(j), tsb(j) + t0(j) + tdτ ]),
respectively. The symbolic spaces of sk are shown in Fig.
3(C-D), which are the symbolic spaces of the velocity
spaces of Figs. 3(A-B), respectively. They show a clear
mismatch between the eye movements before and after
saccades happen. The length-td symbolic sequences, de-
noted by sw(pre, j) and sw(post, j), are constructed by
the encoding of the eyes velocities before and after a blink
that happens at the time liτms.

Finally, we define the symbolic sequences ss(j) rel-
ative to the saccade j in the following way. For a
fixed td, we construct non-overlapping words of length
Ktd, with K ≥ 3, from the velocity variable, for all
valid trials, i.e. all time intervals of the experiment
where blinks are absent and where there is no interrup-
tion of the reading due to the beginning or ending of
the sentences. Then, the symbolic sequences ss(j) are
all symbolic sequences formed by 3 pairs of length-td/2
words in the form sb1.sb2.sb3.sa1.sa2.sa3, such that a sac-
cade happens during the time at which sb3 was gener-
ated. The symbolic space for participant Iη, denoted by
ξ(Iη), is constructed by converting the pairs of words
{sb1.sb2},{sb2.sb3}, {sb3.sa1}, {sa1.sa2}, and {sa2.sa3},
into pairs of real numbers using Eqs. (6). The symbolic
space ξpre(Iη) represents the pair of words {sb1.sb2} and
ξpost(Iη) represents the pair of words {sa2.sb3}. These
symbolic spaces for a participant are shown in Figs. 6(A-
C).

The rules that describe the way short-length words ap-
pear after short-length words in the pre and post saccades
symbolic sequences [sk(pre) and sk(post), respectively],
also know as the grammar, is described by the digrams
that give the possible transitions and probability of tran-
sitions p between words of D letters. For a given D, with
D << td, we split the symbolic sequence in a sequence
of non-overlapping words of length D, and analyze their
probability transitions. Given a symbolic sequence sk

composed by k letters, with k = [1, td], we generate the
words, regarded as s′q, each of length D. As an exam-
ple, for D=2, given a sequence {s1 s2 s3 s4} we create
the sequence s′q=s′1 s′2, with s′1={s1 s2} and s′2={s3 s4}.
The probability of having a length-D word s′q followed
by s′q+1 is represented by ps′

q.s′

q+1
.

Taking participant I5 as an example, for D=1, the di-
gram for the one-word letters in the pre-saccade sym-
bolic sequences, sk(pre), (with td=24 symbols) is shown
in 4(A), and for the post-saccade symbolic sequences,
sk(post), in Fig. 4(B). We only show the most different
probability transitions.

For example, the probability of finding a ’0’ that is
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followed by a ’0’ in the pre-saccade symbolic sequences
is 0.13 while it is 0.27 in the post-saccade symbolic se-
quence. The discrepancy might be a combined effect due
to many factors. The damping of the eye movements
after the saccade (after the period t0) results in smaller
amplitudes and slower oscillations in the eye movements,
reflected in symbolic sequences that present more length-
2 sequences of zeros (positive velocity) as well as more
length-2 sequences of twos (negative velocity). Note,
however, that in the long term, sk(post) does not present
large repeating sequences of zeros or twos, because it re-
flects the dynamics of the fixations, when the eye ran-
domly oscillates around a fixed point. This causes the
big empty areas in Fig. 3(C), specially within [0,0.4].

The large probability transition, p31, for the pre-
saccade sequences is a consequence of the fact that the
pre-saccade velocities change its sign more often, possi-
bly a consequence of the fact that in the pre-saccade the
eyes present faster oscillations.

3

2

0

1

3

2

0

1

(A)

(B)

p  =0.16

p  =0.13

p  =0.27

p  =0.09

00

00

31

31

FIG. 4: Digrams representing the observed transitions among
one-letter words in the pre-saccade (A) and post-saccade (B)
symbolic sequences of the participant I5.

It is important to notice that the digrams of length-D
words in the pre and post saccades symbolic sequences
do not change significantly by varying td in the interval
40ms ≥ tdτ ≥ 120ms. This means that the digram dy-
namics presents a sort of time invariance, if D is kept

constant, while varying td.
In the following, we will consider in our reconstruc-

tion method D=2, since for D > 2 no significant better
performance of the reconstruction method was obtained.

The digrams represent the statistical character of the
eye movements before and after a saccade happens, pro-
vided by averages from the probabilities of many short-
length words observed in all symbolic sequences sk. They
will be used to identify whether a saccade occurs during
a blink.

V. PREDICTIONS BASED ON THE SYMBOLIC

DYNAMICS

As a first step, we calculate the Shannon’s entropy
H(td) of the pre- and post-saccade symbolic sequences,
sk(pre) and sk(post), of length td, in order to estimate
an upper bound for the time interval (Lτ) so that pre-
dictions can be made by using the information contained
in these symbolic sequences

H(td) = −
∑

m

pm log2 (pm) (7)

where pm represents the probability of finding a particu-
lar symbolic sequence sk composed of td letters.
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FIG. 5: [Color online] Circles indicate the analysis in the pre-
saccade sequences and squares in the post-saccade. (A) H
with respect to tdτ , for participant I4. (B) The time interval
for which the maximum of the entropy is reached and in (C)
the value of these maximums.

In Fig. 5(A), we show H for participant I4, which is
an estimation of the amount of information for the sym-
bolic sequences sk(pre) and sk(post), for all saccades of
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the experiment. Empty circles show the entropy of the
sequences sk(pre), and empty squares show the entropy
of the sequences sk(post). An important point that can
be derived from the shape of this curve is that the maxi-
mum entropy values for both sequences is approximately
equal. The maximum of the entropy is reached when
∆H(td) ≤ 0.05, with ∆H(td) defined as

∆(td) = H(td + 1) − H(td).

Thus, once the time interval td provides sequences for
which the maximum of the entropy is reached, an in-
crease in the the length of the symbolic sequences does
not increase the content of information.

However, these maxima are reached for different tdτ .
This becomes clear in Figs. 5(B-C). In (B), the value of
the time interval tdτ , when the maximum value is reached
for each one of the participants, is shown. Clearly, the
maximum of the entropy is reached for shorter time in
sk(pre) than in sk(post). The time intervals in (B) give
an estimate of the time length one can still extract rel-
evant information from the symbolic sequences, i.e., an
estimation of the value of L. The presence of a maxi-
mum for the entropy is a result of either under-sampling
or the presence of correlations in the data set. That also
reflects that our data is composed by a finite number of
”repeating” trials that last for a finite time. In (C), the
maximum of the entropy is visualized.

As a second step, in order to derive predictions from
symbolic sequences, we have to assume that a certain de-
gree of dynamical constraint exists in the data, and that
words are dynamically connected to words that appear
previously. Given for example the following symbolic se-
quence: “3 3 1 2 3 0 . 0 1 3 1 3 0 . sc3 . so1 . 2 2 3 0 0
0 . 1 3 3 1 2 2”, with sc3 and so1 representing two words
with 6 letters, we expect that sc3 can be derived from
the two words that precedes it, denoted by sc1(j)=”3 3
1 2 3 0” and sc2(j)=”0 1 3 1 3 0”, and so1(j) can be pre-
dicted from the two words that appear after it, denoted
by so2(j)=”2 2 3 0 0 0” and so3(j)=”1 3 3 1 2 2”.

The eye movements can be reduced to two main types
of behaviors: Saccades and fixations. Since fixation is
approximately constant and could be modeled by a zero
velocity behavior, for the purpose of the present work, the
only relevant behavior to be predicted in the sequences
sc3(j).so1(j) is the occurrence of a saccade.

Throughout this paper we make two more fundamental
assumptions.

Assumption I A saccade is likely to occur within the
time interval that creates the sequence sc3(j)
[so1(j)] if the digrams of the pre-saccade [post-
saccade] symbolic sequences is likely to be a gener-
ator for the word pairs sc1(j).sc2(j) [so2(j).so3(j)].

Likelihood to be a generator depends on a defined
probabilistic measure. We define the quantity

∆p =

td/D
∑

q=1

ps′

q.s′

q+1
(8)

In this equation, s′q.s
′

q+1 represents a pair of length-
2 words (D=2) observed either in sc1(j).sc2(j) or
so2(j).so3(j). The probability of finding s′q followed by
s′q+1 in the digrams of either the pre or post-saccade sym-
bolic sequences is denoted by ps′

q.s′

q+1
. That generates the

quantities ∆p(pre) and ∆p(post), respectively.
A saccade is likely to have happened during the time at

which sc3(j) was generated if ∆p(pre) > ∆p(post). The
idea here is that if ∆p(pre) > ∆p(post) in the word pair
sc1(j).sc2(j), the digram that represents the pre-saccade
dynamics likely describes the dynamics that generated
this pair. That is, a saccade is likely to have happened
during the time at which sc3(j) was generated. So, Eq.
(8) is a probabilistic distance of how the dynamics of the
pre or post-saccade (given by the digrams) conforms with
either the word pairs sc1(j).sc2(j) or so2(j).so3(j).

The occurrence of a saccade time is consider to be un-
determined if one of the following conditions apply: (i)
for at least one sequence s′q.s

′

q+1 in both sc1(j).sc2(j)
and so2(j).so3(j), we find that ps′

q .s′

q+1
(pre) = 0 and

ps′

q.s′

q+1
(post) = 0; (ii) defining the probabilistic distance

between the digrams of the pre-saccade and post-saccade
sequences as

∆d =
∑

q

|ps′

q.s′

q+1
(pre) − ps′

q.s′

q+1
(post)|, (9)

we find that |∆p(pre) − ∆p(post)| < ∆d.

Assumption II ξ(Iη) can be approximately obtained
by applying a transformation F into ξpre(Iη) and
ξpost(Iη). We denote the resulting reconstructed
space by ξrec.

The result of the transformation F is shown in Fig.
6(D), where we plot the symbolic sequences of the
form sb1(j).sb2(j).sb2(j).sa2(j).sa2(j).sa3(j), which pro-
duces the following pair of points {sb1(j).sb2(j)},
{sb2(j).sb2(j)}, {sb2(j).sa2(j)}, {sa2(j).sa2(j)},
{sa2(j).sa3(j)}. Therefore, the transformation F
results in sb3=sb2 and sa1=sa2. Note the similarity
between the space ξ in (A) and the space ξrec in (D).
This can also be seen in Fig. 7, where we show the
probability distribution of points in the horizontal
coordinates of the spaces in Figs. 6.

The chosen F transformation is one of many other pos-
sible dynamics from which one can successfully recover an
equivalent ξ space. But, we choose it because symbolic
sequences of the desired form {sb1.sb2.sb2.sa2.sa2.sa3} are
often observed in some of the j sequences ss(j). These
symbolic sequences are encoded into real sequences [using
Eq. (6)] into Sb1.Sb2.Sb2.Sa2.Sa2.Sa3. Then, we search
sequences of pairs of words in the symbolic sequence of
the saccade, ss, whose real encoding sequence regarded as
sr is denoted by Sb1.Sb2.S

′

b2.S
′

a2.Sa2.Sa3, with S′

b2=Sb2+ǫ
and S′

a2=Sa2 + ǫ. We find that the percentage of points
ρ, that respects this rule follows a power-law with respect
to ǫ, ρ ∝ ǫ0.68, as shown in Fig. 8, which implies that
ρ > ǫ.
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FIG. 6: The symbolic spaces, ξ in (A), ξpost in (B), ξpre

in (C), and ξrec in (D), a transformation of the spaces ξpost

and ξpre that presumably reproduces the characteristics of ξ.
These symbolic spaces structures remain roughly invariant as
we consider pre and post-saccade sequences of length varying
from 40ms ≤ td ≤ 120ms. This points to that the symbolic
dynamics is roughly time invariant. For these figures, we con-
sider words of length td = 20, so, as example, sb1(j) represents
a 20-letters word. The presence of large sequences of zeros or
twos in ξpre (C) is responsible for the points close to 0 and
close to 0.7.
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FIG. 7: The probability distribution of the points in the hor-
izontal coordinate of the symbolic spaces in Figs. 6(A-D).

Therefore, even if we decrease ǫ, there is still a finite
probability, larger than if the relation between ρ and ǫ

were linear, of finding sequences as the ones created by
the transformation F . So, symbolic sequences similar
to the desired one appear often, which also means that
points in the symbolic space ξ(Iη) return often to the
diagonal.

One should expect that ρ ∝ ǫ if the symbolic sequences
were generated by a Markov Process. If the probability
of having a symbol ’0’ is p0 and of having a ’1’ is p1, the
probability of having the symbol ’0’ followed by ’1’ in a
Markov process is given by p0 × p1. In fact, the found
power-law is an effect of the existence of certain con-
straints in the eye’s movements, a typical characteristic
of dynamical systems.

The interpretation of the chosen transformation F is
simple: The dynamics of the eyes for short-time intervals
before and after making a saccade reveals if a saccade
will happen or has already happened.

The main difference between the symbolic space ξpre

and ξpost is the absence (in ξpost) of large sequential se-
quences of zeros or twos, as the ones observed in ξ(pre).
That is easy to be understood by considering that simi-
larly to what happens in the space for the symbolic se-
quences sk(post) [see Fig. 3(D)], ξpost represents the long
term behavior of the eyes during a fixation, which have
roughly a constant velocity, and does not present tenden-
cies which would be encoded by larger sequences of zeros
or twos.

Another point that is relevant to be emphasized is that
before a saccade happens our eyes have an excited dy-
namics (g in Eq. (4) is negative), while after the saccade
happens the eyes have a dissipative (damped) dynamics
(g in Eq. (4) is positive). The damping effect is also an-
other reason for the absence of relevant tendencial move-
ments.

Thus, ξpost can be considered to represent the au-
tonomous dynamics of the eyes, while ξpre represents the
forced dynamics. The force is produced by the will of the
participant to move its eyes. Recall that the saccades are
reconstructed only considering the dissipative dynamics
in the super-critical behavior.

VI. APPROACHES FOR RECONSTRUCTING

THE BLINKS

A participant makes NB blinks during the reading and
a blink occurs at the time li (in units of τ , or liτ ms), last-
ing B(li) (in units of τ or B(li)τ ms), with i = 1, . . . , NB.
As introduced in Sec. IV, we represent the length-td sym-
bolic sequences that appear before the participant blinks
by a pair of length td/2 words {sc1.sc2}, and the length-
td symbolic sequences that appear after the participant
opens the eyes is represented by {so2.so3}. Based on as-
sumption II, the reconstructed symbolic dynamics of the
blink is given by {sc2.so2}.

Then we adopt a series of procedures. First, we check
whether {sc1.sc2} ({so2.so3}) is likely to be generated
by the digrams of the pre-saccade (post-saccade). In



9

0.0001 0.001 0.01 0.1
ε

0.001

0.01

0.1

1
ρ
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symbolic sequences that respects the chosen F transforma-
tion.

other words, we detect equivalence of {sc1.sc2} with the
pre-saccade digram (assumption I). This suggests that a
saccade might have happened right after the participant
blinks, which would imply that in sc2 one would find se-
quences of either zeros (’0’), if the eyes move to the right
after blinking or twos (’2’), if the eyes move to the left.

If we find a word composed of at least 4 [15] sequen-
tial zeros followed one after the other (or twos) in sc2,
we assume a saccade must have happened in the time
ts(li) = (li + θ(li))τ ms, where θ(li) is a function of the
number of letters that precedes the largest sequential se-
quence of zeros (or twos) in sc2, denoted by θ′. Similarly,
we assume that the period of the reconstructed saccade
in units of τ , denoted by q(li), is proportional to the
number of sequential zeros (or twos), denoted by q(li)

′.
If we detect equivalence of {so2.so3} with the digram

of the post-saccade, we assume that the saccade must
have started in the time ts(li) = (li + td/2 + θ(li))τms,
where θ(li) now depends on the number of letters that
appear before the sequential sequences of zeros (or twos)
in so2. The number of sequential zeros or twos gives the
value q(li)

′ from which one can calculate the period of
the saccade.

In the case a saccade is likely to have happened during
a blink, but no sequence of only zeros or twos are found
either in sc2 or so2 that have at least length 4, then, we
look for sequences in the whole reconstructed sequence
{sc2.so2}. We also search for a sequence of zeros or twos
in the whole reconstructed sequence if the occurrence of
a saccade is undetermined.

In the following section we show how to choose the
value of td in order to improve the performance of our

reconstruction method. However, while td is considered
to be fixed, the li-th blink has a period B(li) which is, in
general, different than td. If the word pairs {sc1.sc2} and
{so2.so3} show evidence that a saccade happens during
the blink, from the previous considerations this blink will
be reconstructed by assuming that the encoding symbolic
sequence of the blink is given by {sc2.so2}. Saccades
are reconstructed by finding the repeating sequences of
zeros or twos in sc2, so2, or {sc2.so2}. However, the time
interval of the blink (B(li)) is different than the time
interval associated with {sc2.so2} (td) as well as the half-
time interval of the blink (B(li)/2) is different than the
time interval associated with either sc2 or so2 (td/2).

Therefore, if we find that the period of the saccade is
q(li)

′ (in units of τ), we rescale this time interval with
respect to the time interval of the blink, and consider
that the saccade during the blink has a period given by

q(li) = q(li)
′
B(li)

td
(10)

Similarly, the time at which the saccade is assumed to
have started is calculated from θ(li) which is given by

θ(li) = θ(li)
′
B(li)

td
(11)

Equations (10) and (11) are constructed under a reason-
able hypothesis that the time scale of the eye movements
during a blink are influenced by the period of the blink.
They also adjust the time interval of the reconstructed
symbolic sequences to correspond to the period of the
blink.

If no words composed of at least 4 zeros (or twos) are
found in sc2.so2, we assume that a saccade happens in
the middle of the blink and the average period 〈t0〉 of
all saccades during reading is taken as the period of the
saccade. If Eqs. (10) and (11) results in q(li) + θ(li) >
B(li), we make θ(li) = B(li) − q(li).

Once we have worked out the time that the recon-
structed saccade starts, ts(li), and the period of the sac-
cade q(li)τ , we assume in Eq. (1) that X(t′ = 0) = A(li),
where A(li)=Po(li)−Pc(li), with Po(li) representing the
position of the eye after opening (in the end of the li-
th blink) and Pc(li) representing the position of the eye
right before closing. tsb, in Eq. (3), should be substi-
tuted by liτ . We also assume that after a time given
by liτ + 2.5q(li)τ , the reconstructed position of the eyes
from Eq. (2) is a value so that |P (li) − Po(li)|=1 pixel.
This means that after 2.5 oscillation periods, the recon-
structed saccade is supposed to end. From this hypothe-
sis, we can calculate the quantity δ(li), which is used to
calculate g(li), in Eq. (4).

A blink li is reconstructed by making P (t) = Pc(liτ)
for the time liτ ≤ t < liτ + ts(li) (i.e., no movement of
the eyes) and for liτ + ts(li) ≤ t ≤ liτ +B(li), we use Eq.
(1) in the coordinate system of the eye position provided
by Eq. (2).
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VII. OPTIMAL PARAMETERS, ROBUSTNESS,

AND STATISTICAL SIGNIFICANCE OF THE

RECONSTRUCTION METHOD

To validate our method, we reconstruct blinks artifi-
cially created around the places where saccades happen.
So, for each one of the Ns saccades made while reading,
we create a series of f=10 blinks that last for a time
interval PB. The first artificial blink ends at the time
tsb(j) + t0(j)/2 ms (middle of the saccade) and the last
artificial blink begins at this same time tsb(j) + t0(j)/2
ms. Thus, each artificial blink, referred to as br(j), with
r = {1, . . . , f} starts at the time tab(j, r):

tab(j, r) = tsb(j) + t0(j)/2 − PB + r
PB

f
. (12)

The reconstruction of the artificial blink uses our
method previously described (Secs. III, IV, V, and VI).
We first constructed the digrams, using the symbolic se-
quences sk of length td, generated from the whole data
series, without the presence of artificial blinks. Then,
for every artificial blink we generate the symbolic se-
quences sw(pre) = {sc1.sc2} and sw(post) = {so2.so3}
as described in Sec. IV and VI.

After applying our method, for every artificial blink r
around a saccade j, we find that the reconstructed sac-
cade starts at the time tr(j, r) (in units of ms) and has a
period t0r(j, r) (in units of ms).
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FIG. 9: [Color online] With empty circles we show the recon-
struction of an artificial blink.

An example of the reconstruction of an artificial blink
for the participant I2 is shown in Fig. 9, indicated by

the empty circles. For this saccade, we have detected
that the symbolic sequence of the post-blink, sw(post),
was likely generated by the digram of the post-saccade.
Remarkably, indeed, the saccade happens right before the
end of the artificial blink. Notice that after the artificial
blink ends, one notes a slight movement of the eyes to
the right (increasing the value of P ), caused by the typ-
ical oscillatory behavior after the saccade happens. This
oscillatory behavior produces in the symbolic sequence,
sw(post), the sequential sequences of zeros and twos from
which we obtain the time at which the reconstructed sac-
cade begins [tr(j, r)] and the period of the reconstructed
saccade [t0r(j, r)] within an artificial blink.

To quantify how good is the reconstruction of the ar-
tificial blink, we calculate the absolute difference be-
tween the predicted time for the beginning of the sac-
cade, tr(j, r), and the real time for the beginning of the
saccade, tsb(j), normalized by the time interval of the
artificial blink. We calculate this quantity for all the ar-
tificial blinks and average it, producing

〈tr〉 =
1

Ns.f

Ns
∑

j=1

f
∑

r=1

|tr(j, r) − tsb(j)|

PB
(13)

Then, we calculate the absolute difference between the
real time when the saccade starts, tsb(j), and the time
of a hypothetical reconstructed saccade if it had started
in the middle of the artificial blink, normalized by the
assumed time interval of the artifical blink:

〈t′r〉 =
1

Nsf

Ns
∑

j=1

f
∑

r=1

|t′r(j, r) − tsb(j)|

PB
(14)

where t′r(j, r)=tab(j, r)+PB/2.
Similarly, we calculate the absolute difference between

the period of the reconstructed saccade, t0r(j, r), and the
real period t0(j), normalized by the average period of the
saccades, producing

〈t0r〉 =
1

Nsf

Ns
∑

j=1

f
∑

r=1

|t0r(j, r) − t0(j)|

〈t0〉
(15)

and we calculate the absolute difference between the real
period of the saccade, t0(j), and the period of a hypothet-
ical reconstructed saccade if it had been reconstructed
assuming that it is equal to the average period of the
saccades 〈t0〉, producing

〈t′0r〉 =
1

Nsf

Ns
∑

j=1

f
∑

r=1

|〈t0〉 − t0(j)|

〈t0〉
(16)

Our method produces statistically significant results if
the quantities

σ = 〈t′r〉 − 〈tr〉 (17)

and

β = 〈t′0r〉 − 〈t0r〉 (18)
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are positive. Notice that a positive σ is a measure of
’how much better our method reconstructs the time a
saccade happens’ if compared to a method that would
reconstruct a saccade as if it had happened in the middle
of the artificial blink. A positive β is a measure of ’how
much better the method reconstructs the period of the
saccade’.

We calculate these quantities by considering different
values of the time interval PB considered for the artifical
blink. For each value of PB, we reconstruct the artificial
blinks using symbolic sequences of different lengths td.
In Figs. 10 and 11, we show σ and β, respectively, for an
young participant. In Fig. 12 and 13, we show the same
quantities for an old participant.
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FIG. 10: Values of σ for participant I5 varying tdτ and PB ,
for D=2.

These figures illustrate that there is an extended region
in the parameter space tdτ×PB where parameters can be
changed and still our method reconstructs the saccades
present in the artificial blinks in a better way than if we
had just guessed that the saccade starts in the middle of
the artificial blink, having a period equal to the average
period of all the saccades while reading. This demon-
strates the robustness of prediction of this method, un-
der a wide range of PB and td values. Similar positive
results for the blink reconstruction were obtained for the
other participants.

The quantities σ and β depend more on the length of
the symbolic sequences, td, than on PB . This indicates
that our method is able to reconstruct real blinks, whose
durations extend over a wide range, well enough, if td
is well chosen. Roughly, td ≥ 40 should produce good
results.

In table 1, for each participant the average duration of
the blinks 〈B〉 is listed in the second column, the average
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FIG. 11: Values of β for participant I5 varying tdτ and PB ,
for D=2.
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FIG. 12: Values of σ for participant I1 varying tdτ and PB ,
for D=2.

period of the saccades 〈t0〉 in the third column . The
value of td that produces the largest value of σ and β are
shown in the columns 4 and 5, respectively. We consider
td ≤ 120ms, a time interval for which we can extract rel-
evant information from the symbolic sequences (see Sec.
V). Thus, a reconstructed artificial blink that reproduces
well the time of the beginning of the saccade is obtained
by using tdτ shown in the fourth column. On the other
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TABLE I: Characteristics of the 7 participants considered in this work.

Ii 〈B〉(ms) 〈t0〉 (ms) tdτ (ms) tdτ (ms) pre-blink # blinks/s 〈ω〉 〈g〉 T (s)
I1 60.000 41.485 120 116 0.737 0.134 0.133 0.104 788.928
I2 75.766 35.991 76 116 0.333 0.134 0.102 0.080 1149.148
I3 48.424 40.045 120 116 0.060 0.030 0.137 0.107 1110.560
I4 53.289 33.198 72 116 0.000 0.046 0.118 0.093 968.500
I5 98.280 26.034 76 116 0.236 0.098 0.185 0.099 1021.836
I6 72.502 23.890 76 116 0.115 0.344 0.177 0.101 954.918
I7 72.545 23.905 92 116 0.125 0.027 0.184 0.113 817.594
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FIG. 13: Values of β for participant I1 varying tdτ and PB ,
for D=2.

hand, a reconstructed artificial blink that reproduces well
the period of the saccade is obtained by using tdτ values
shown in the fifth column. This shows a kind of Heisen-

berg’s principle in our method. Either one reconstructs
reasonably the time a saccade starts or its period, but not
both quantities simultaneously, except for the readers I1

and I3.

Other quantities that characterize the participants are
also shown in this table. These are the probabilities (col-
umn 6) of finding that the pre-blink symbolic sequences,
sw(pre), (using a td value from the fourth column) were
likely generated by the digram of the pre-saccades dy-
namics, the number of blinks per second (column 7), the
average angular frequency with which the reader makes a
saccade 〈ω〉 (column 8), the average damping coefficient
〈g〉 of the saccades (column 9), and the time that the
participants took to read all the sentences of the PSC,
the quantity T (column 10).

It is interesting to note that participant I1 has a high
probability (0.737) of making saccades immediately after
closing the eyes. Furthermore, the time he takes to read
all the sentences of the PSC is the shortest compared
to the other participants. This suggests some sort of
efficient reading behavior in the sense that the saccade
target is already detected before the reader blinks.

Note that for many participants the ideal value of tdτ
that better reconstructs the time at which a saccade
starts is of the order of the time interval at which we
can still extract relevant information from the symbolic
sequences (see Sec. V).

VIII. RECONSTRUCTING THE BLINKS

For reconstructing the real blinks, we consider D=2
and tdτ from the column 4 of Table 1, which might allow
our method to reconstruct well the time at which a sac-
cade starts. We consider symbolic sequences sw(pre) =
{sc1.sc2} and sw(post) = {so2.so3}, that encode the eye
velocity before and after a blink, respectively. In Figs.
14(A-D), we show a few examples of the blink reconstruc-
tion for the participant I2. In (A), sw(pre) was found
to be likely generated by the digram of the pre-saccade
symbolic sequence. In (B), two blink reconstructions are
shown. In the first blink, the method is unable to deter-

mine if a saccade happens during this blink and it is as-
sumed that a blink happens in the middle of the interval.
In the second blink, sw(post) was found to be likely gen-
erated by the digram of the post-saccade, which means
that a saccade must have started right before the eyes
open, the same case is illustrated in (C). In (D), sw(pre)
was found to be likely generated by the digram of the
pre-saccade.



13

0

100

200

300

400

P
 (

p
ix

e
ls

)
P

i 
(pixels)

reconstructed data
pre-blink <=> pre-saccade
post-blink <=> post-saccade
undetermined

0

100

200

300

400

0

100

200

300

P
 (

p
ix

e
ls

)

-100

0

100

200

300

400

500

time time

time time

(A) (B)

(C) (D)

FIG. 14: [Color online] Some examples of the blink recon-
struction using our method with parameters D=2 and tdτ
from the column 4, in Table 1.

IX. ANALYSES OF THE RECONSTRUCTED

DATA

The results of the statistical tests provided in Sec. VII
and the reconstruction examples in Sec. VIII indicate
that the model reconstructs the data losses due to blinks
with qualitatively high precision, and the reconstructed
data seem to reproduce the natural movement of the eyes.
Of further interest is the benefit we gain from the recon-
struction procedure for the analysis of eye movements in
reading.

We have analyzed the reconstructed data using sev-
eral eye movement measures, that are considered to be
related to cognitive processing during reading, when the
word is the unit of analysis [16]. Gaze duration is defined
as the sum of all fixations on a word in first pass reading.
Total reading time is the sum of all fixation durations on
a word, including regressions from second pass reading.
First pass single fixation duration describes the fixation
duration when a word is fixated exactly once, preceeded
and followed by a forward saccade. If a word is fixated
once, fixation position in the word is usually in the first
half of the word, that is on the second or third letter

of a word [17]. The skipping rate is the probability a
word is not fixated during the first inspection of the sen-
tence, whereas regression probability is here defined as
the chance that a word is the origin of a regressive eye
movement. All of these measures are important variables
if the ease of processing, strategies during reading, or ef-
fects of the material on fixational behavior (e.g. word
frequency effects) are of theoretical interest.
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FIG. 15: Comparison of global eye movement statistics for
young and old participants as a result of the reconstruction
method. Dotted lines represent results of the unmodeled data,
solid lines represent results of the reconstructed data.

In Figure 15 means in total reading time per word,
gaze duration, first pass single fixation duration, fixa-
tion position of single fixations, skipping, and regression
probability for the data of the seven participants with
and without reconstruction are visualized. Despite in-
dividual differences in eye movement patterns, there are
no significant changes between the original data set and
the reconstructed data for any of the six processing mea-
sures. In fact, the qualitative similarity of the data with
and without reconstruction in the various measures of
reading behavior is quite impressive.

Participant I2 and I6 show the largest differences in to-



14

tal reading time and the probability of regressions. Since
the probability of blinking increases with reading time,
i.e. second pass reading, and trials with blinks were ex-
cluded from the analysis in the data without reconstruc-
tion, it is plausible that the valid trials of these two sub-
jects in the data without reconstruction mostly include
trials with few second pass fixations. Total reading time
and the number of regressions depend on second pass
reading; in fact, total reading time correlates with the
number of regressions, since second pass fixation dura-
tions are included in total reading time. Therefore, longer
total reading times and higher regression probabilities for
these two subjects in the data with reconstruction is not
surprising, but highly expectable.

X. CONCLUSIONS

We have used the symbolic representation of the eye
velocities as a tool to reconstruct an eye movement sig-
nal obtained in a reading experiment, when the eyes are
closed during a blink. The dynamics of saccades played a
crucial role for predicting the signal of the eye positions
during blinking. Essentially, for each participant the sig-
nal could be restored by finding the closest similarities
between the dynamics of the eye velocities before or af-
ter a saccade and before or after a blink. Thus, the eye
movements before and after a blink occurs carry informa-
tion about how the eye behaves during a blink. Results
demonstrated a qualitatively precise prediction for the
signals during blinks.

The reconstructed data did not affect eye movement
measures related to cognitive processing during reading.
Total reading time, gaze duration, and single fixation du-
ration for words did not change significantly, neither was
fixation position in the word, skipping probability or re-
gression probability affected by the reconstruction of the
signal. This was true for young as well as old subjects.
Especially for the analysis of processing measure includ-
ing second pass reading (e.g. total reading time, regres-
sion probability), the reconstruction method is a valuable
tool to increase statistical power. Blinks occur more fre-
quently if reading time increases. Thus, trials containing
second pass reading are relatively more often excluded
from the analysis, if blink occurrence is the criteria for
trial exclusion. The use of a reconstruction method re-
covers those trials with relatively many blinks, provid-
ing a more complete picture of the processing variances
between subjects during reading. The reconstruction of
saccades during spontaneous blinks from saccadic data
recorded from the open eye is a useful approximation.
We cannot rule out that the blink itself interferes with
the motor program of the saccade, changing its parame-
ters in subtle ways. As far as we know, at present there is
no reliable evidence in support of this possibility. In sum,
the described reconstruction model is a precise and useful
tool to overcome problems of data loss in eye movements
during reading, especially if the analyses of fixation se-

quences is fundamental to theoretical questions.
The method proposed here was applied to reconstruct

the data series of the eye position. However, it is of gen-
eral appliance for other types of complex data. In a gen-
eral way, the proposed method is based on the symbolic
identification of either (or both) precursors or indications
of the occurrence of an event. In the particular case of
this work, the event is a saccade. But, in a general situ-
ation, an event could be a heart attack or a brain stroke.
In many situations, the identification of a precursor of
such events would be desirable in order to take preven-
tive actions [18]. But as a first step, one often wants to
know if an event has happened. Other examples where
our method could provide relevant applications are in
the study of extreme events as earthquakes, stock mar-
ket crashes, hurricanes, floods, and others.
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XI. APPENDIX

Definitions of parameters, variables, and constants

Symbol Meaning

τ time step of the experiment (τ=2ms)

Pi horizontal position of the right eye for the time iτ

Iη participants η = [1, 7]

j index used to denote a particular saccade

tsb(j) time that saccade j begins, in units of ms

tfb(j) time that saccade j ends, in units of ms

NS number of saccades made to read all the sentences

t0(j) period of the saccade j, in units of ms

A(j) + δ(j) amplitude of the saccade j

ω(j) angular frequency of the saccade j

g(j) damping coefficient of the saccade j

B(li) period of the li blink, i = 1, . . . , NB , in units of τ

NB number of blinks (l = 1, . . . , NB)

liτ time that a blink happens

Vi velocity

tdτ time interval considered to construct a symbolic sequence

td length (i.e. # of letters) of the symbolic sequences considered

Sn real number that represents a symbolic sequence of length td

sk(pre, j) a symbolic sequence of length td that ends when the saccade j starts

sk(pos, j) a symbolic sequence of length td that starts when the saccade j ends

sw(pre, li) symbolic sequence of length td before blink that occurs at liτ

sw(post, li) symbolic sequence of length td after blink that occurs at liτ

Pm(j) probability of finding a sequence of length td

∆p summation of the probabilities among transitions of length-D symbolic sequences

ξ symbolic plane of the saccade

ξpost symbolic plane of the post-saccade

ξpre symbolic plane of the pre-saccade

q(li) period of the reconstructed saccade within blink li, in units of τ

[li + θ(li)]τ moment that the reconstructed saccade starts within blink li, in units of ms

ts(li) time that the reconstructed saccade begins within blink li, in units of ms

Po(li) position of the right eye right after the end of the blink (opening of eye)

Pc(li) position of the right eye right before the beginning of the blink (closing the of the eye)

A(li) + δ(li) amplitude of the reconstructed saccade

PB(j, t) time interval of the artificial blink, in units of ms

br(r = 1, f) artificial blinks around a saccade

tab time that an artificial blink begins, in units of ms

tr(j, r) time that a reconstructed saccade begins in an artificial blink, in units of ms

t0r(j, r) period of a reconstructed saccade in an artificial blink, in units of ms
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